We study an unusual working regime of a recently developed sub-terahertz microwave cavity-based switch. The resonator cavity includes a semiconductor plate which is illuminated by laser emission beyond the photoelectric threshold. Despite a significant change to the conventional process of photoelectric effect we have found that the switch works. Typical switching performance rate is about 1 μs for the regime. A process of carrier density relaxation beyond the photoelectric threshold is discussed. An idea of diagnostic method for the semiconductor's quality is proposed.
We propose a time-resolved photothermal common-path interferometry scheme at fast heating in the absence of heat diffusion and employ it to measure absorption in Suprasil 311 silica glass (2.8·10 cm) at a wavelength of 1071 nm and continual absorption in laboratory air (2.9·10 cm) for a signal-to-noise ratio of 100/1. The absorption was measured at a thermally induced phase incursion of less than 0.1 rad in a heating beam, which guaranteed correct calibration. To calibrate this scheme, we developed a theory of diffraction on deformations taking into account the stresses arising in an inhomogeneous temperature field. This allowed us to use a standard glass K8 for calibration. The low level of noise and time resolution of pulsed signals allowed the distinguishing of the contributions of Kerr and striction nonlinearities to absorption measurements in Suprasil 311 silica glass and enabled the observance of the time evolution of strictional deformations. Additionally, an anomalous temporal development of the absorption of broadband laser radiation in atmospheric air at 2.9·10 cm has been revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.