SUMMARY. Since heart failure may occur in the setting of lung dysfunction and CO2 retention with only modest increases in cardiac work load, we questioned whether myocardial function is impaired by hypercapnic acidosis. To determine the influence of hypercapnic acidosis on right ventricular function, we measured the effects of acute (2 hours) and chronic (2 weeks) hypercapnic acidosis on right ventricular performance during normal and increased right ventricular afterload in five conscious dogs. Systemic hemodynamic and right ventricular functions were unaltered during normal right ventricular afterload by acute hypercapnic acidosis (Paco2 = 49 ± 3 mm Hg, pH = 7.27 ± 0.003). As right ventricular afterload was increased by progressive balloon occlusion of the right ventricular outflow tract during acute hypercapnic acidosis, the rise (slope) in right ventricular enddiastolic pressure was increased 4-fold (P < 0.01) over that observed in normocapnic control. Maximum isovolumic right ventricular dP/dt rose (P < 0.05) comparably with increasing right ventricular afterload during normocapnic control and acute hypercapnic acidosis. Chronic hypercapnic acidosis (Paco2 = 55 ± 2 mm Hg, pH = 7.28 ± 0.01) resulted in systemic vasodilation and increased (P < 0.05) heart rate and cardiac output during normal right ventricular afterload. As right ventricular afterload was increased during chronic hypercapnic acidosis, the rate of rise in right ventricular end-diastolic pressure was 2-fold (P < 0.01) above normocapnic control but maximum isovolumic right ventricular dP/dt was unchanged in contrast to normocapnic control and acute hypercapnic acidosis. Moreover, cardiac output fell and stroke work was unchanged with increasing afterload during chronic hypercapnic acidosis. /?-Adrenergic blockade resulted in an increased (P < 0.01) rate of rise in right ventricular end-diastolic pressure with afterload during normocapnic control and chronic hypercapnic acidosis. We conclude that hypercapnic acidosis results in diminished right ventricular performance during increased right ventricular afterload, evidenced by accentuated rise in right ventricular end-diastolic pressure, and may contribute to the congestive heart failure and edema observed in patients with pulmonary hypertension and CO2 retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.