Multiple Signal Classification (MUSIC) is one of the efficient super resolution algorithms, which can be used for angular super resolution in Radars. The large antenna array is divided into sub arrays and only sub array outputs are used to estimate the spatial spectrum in order to reduce the system complexity and computational load. Only local super resolution can be achieved with sub array outputs by forming the array manifold vector with sub array phase centers and gains. The spatial spectrum and sub array formation are closely related. In this paper the effect of grating lobes on the original main lobe by using Spot-light MUSIC is explained in detail. The ambiguity in the local super resolution has been discussed with simulation results for the planar arrays.
A Three phase bidirectional AC to AC buck converter circuit using power MOSFET operating in high frequency chopping mode is simulated and analyzed for electrical parameters such as output phase voltage, input line current, input power factor, harmonic profile and efficiency using MATLAB/simulink software package. The various PWM techniques such as symmetrical ramp-DC PWM (SRDPWM), asymmetrical ramp-triangular PWM (ARTPWM), asymmetrical sinusoidal PWM type-1 [ASPWM1] and asymmetrical sinusoidal PWM type-2 [ASPWM2] techniques are adopted to analyze the harmonic profile, input power factor and efficiency of the converter. The rms value of the output phase voltage, output line current and source current can be significantly increased by varying the duty ratio K in case of symmetrical PWM control strategy and modulation index MI in case of asymmetrical PWM control strategies independent of variation in switching frequency. It is observed from the simulation results that the ASPWM1 switching strategy gives more output phase voltage, input power factor, efficiency by increasing modulation index MI and reduced low order harmonics of output voltage and source current by increasing the number of pulses per half cycle P compared to other PWM techniques rendering easy and economical filteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.