The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided.
S. (2017). High-frequency monitoring of catchment nutrient exports reveals highly variable storm event responses and dynamic source zone activation. Abstract Storm events can drive highly variable behavior in catchment nutrient and water fluxes, yet short-term event dynamics are frequently missed by low-resolution sampling regimes. In addition, nutrient source zone contributions can vary significantly within and between storm events. Our inability to identify and characterize time-dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here we utilize an 8 month high-frequency (hourly) time series of streamflow, nitrate (NO 3-N), dissolved organic carbon (DOC), and hydroclimatic variables for a headwater agricultural catchment. We identified 29 distinct storm events across the monitoring period. These events represented 31% of the time series and contributed disproportionately to nutrient loads (42% of NO 3-N and 43% of DOC) relative to their duration. Regression analysis identified a small subset of hydroclimatological variables (notably precipitation intensity and antecedent conditions) as key drivers of nutrient dynamics during storm events. Hysteresis analysis of nutrient concentration-discharge relationships highlighted the dynamic activation of discrete NO 3-N and DOC source zones, which varied on an event-specific basis. Our results highlight the benefits of high-frequency in situ monitoring for characterizing short-term nutrient fluxes and unraveling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights, which we summarize in a conceptual model, are fundamental to underpinning targeted management measures to reduce nutrient loading of surface waters.
Abstract--The binary exchange of cations on clays and soils is generally regarded as a thermodynamically reversible process. The literature on soil chemistry and geochemistry, however, abounds with reports on cation exchange reactions that appear to have only limited reversibility, i.e., that exhibit hysteresis. A satisfactory explanation of this phenomenon is still lacking, even though a number of mechanisms have been advocated, e.g., charge or site heterogeneity at the surface, differential hydration of cations, dehydration of the exchanger, crystalline swelling hysteresis, and inaccessibility of sites caused by domain or quasi-crystal formation. In the present article, the relevant literature is reviewed and analyzed critically. On the basis of available evidence, it is shown that exchangeable cations can be classified into three groups, defined in such a way that hysteresis has, in the literature, generally not been observed when exchange reactions involved cations belonging to the same group, but has often been found when the reactions involved cations from different groups. Furthermore, it is argued that none of the five mechanisms mentioned can, in and of itself, account fully for the observed exchange hysteresis. A conceptual model is proposed that combines elements of these five mechanisms and is able to describe, at least qualitatively, the effects of factors such as clay type, electrolyte concentration, and extent of dehydration.
Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.