Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53). The data revealed new candidates for targeted therapies, such as GREB1 and ROR2. We showed that the development of platinum resistance correlated with upregulation of ROR2, whereas GREB1 was downregulated. Moreover, we demonstrated that high levels of ROR2 in platinum-resistant samples were associated with upregulation of Wnt5a, STAT3 and NF-kB levels, suggesting that a crosstalk between the non-canonical Wnt5a-ROR2 and STAT3/NF-kB signaling pathways. Upregulation of ROR2, Wnt5a, STAT3 and NF-kB was further detected in a platinum-resistant cell-line model. The results of the present study provided insight into molecular mechanisms associated with platinum resistance that could be further investigated to improve treatment strategies in this clinically challenging gynecological cancer.
Targeting Poly (ADP-ribose) polymerase 1 (PARP-1) involved in base excision repair (BER) has been shown to be a clinically effective treatment strategy in epithelial ovarian cancer (EOC) defective in homologous recombination (HR). The aim of this study was to evaluate fresh EOC tumor tissue in regard to PAR (Poly (ADP-ribose)) concentration as a surrogate marker for PARP activity and PARP protein expression in archival samples by immunohistochemistry (IHC). The prospective study cohort consisted of 57 fresh tumor samples derived from patients undergoing primary (n = 38) or interval debulking surgery (n = 19) for EOC and parallel archival paraffin-embedded tumor samples. PARP activity in fresh frozen tumor tissue was assessed by an enzymatic chemiluminescence assay and PARP protein expression in paraffin-embedded tumor tissue by IHC. No correlation was detected between PARP enzyme activity and PARP staining by IHC (p = 0.82). High PARP activity was associated with platinum sensitivity both in the entire study cohort (p = 0.022) and in the high-grade subgroup (p = 0.017). High PARP activity was also associated with improved progression-free survival (PFS) (32 vs 14 months, log-rank p = 0.009). However, PARP immunostaining pattern was not predictive of patient survival. In conclusion, we present a novel finding of high PARP activity associated with platinum sensitivity and improved PFS in EOC. There was no association between PARP IHC and pharmacodynamic assay, and the correlation of PARP IHC with clinico-pathological characteristics and patient survival was poor. Pharmacodynamic assay rather than IHC seems to reflect better biologically significant PARP.
Mutations in the BRCA1 and BRCA2 genes confer an increased lifetime risk for breast and ovarian cancer. Ovarian cancer risk can be decreased by risk-reducing salpingo-oophorectomy (RRSO). Studies on RRSO material have altered the paradigm of serous ovarian cancer pathogenesis. The purpose of this study was to identify candidate genes possibly involved in the pathogenesis of serous ovarian cancer by carrying out a microarray analysis of differentially expressed genes in BRCA1/2- mutation positive ovarian and fallopian tube epithelium derived from RRSO surgery. Freshly frozen ovarian and fallopian tube samples from nine BRCA1/2 mutation carriers scheduled for RRSO were prospectively collected together with five mutation-negative control patients undergoing salpingo-oophorectomy for benign indications. Microarray analysis of genome-wide gene expression was performed on ovarian and fallopian tube samples from the BRCA1/2 and control patients. The validation of microarray data was performed by quantitative real-time polymerase chain reaction (qRT-PCR) in selected cases of RRSO samples and also in high grade serous carcinoma samples collected from patients with a BRCA phenotype. From 22,733 genes, 454 transcripts were identified that were differentially expressed in BRCA1/2 mutation carriers when compared with controls, pooling all ovarian and fallopian tube samples together. Of these, 299 genes were statistically significantly downregulated and 155 genes upregulated. Differentially expressed genes in BRCA1/2 samples reported here might be involved in serous ovarian carcinogenesis and provide interesting targets for further studies.
Wnt pathway dysregulation through genetic and non-genetic alterations occurs in multiple cancers, including ovarian cancer (OC). The aberrant expression of the non-canonical Wnt signaling receptor ROR1 is thought to contribute to OC progression and drug resistance. However, the key molecular events mediated by ROR1 that are involved in OC tumorigenesis are not fully understood. Here, we show that ROR1 expression is enhanced by neoadjuvant chemotherapy, and Wnt5a binding to ROR1 can induce oncogenic signaling via AKT/ERK/STAT3 activation in OC cells. Proteomics analysis of isogenic ROR1-knockdown OC cells identified STAT3 as a downstream effector of ROR1 signaling. Transcriptomics analysis of clinical samples (n = 125) revealed that ROR1 and STAT3 are expressed at higher levels in stromal cells than in epithelial cancer cells of OC tumors, and these findings were corroborated by multiplex immunohistochemistry (mIHC) analysis of an independent OC cohort (n = 11). Our results show that ROR1 and its downstream STAT3 are co-expressed in epithelial as well as stromal cells of OC tumors, including cancer-associated fibroblasts or CAFs. Our data provides the framework to expand the clinical utility of ROR1 as a therapeutic target to overcome OC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.