As supercomputer performance approached and then surpassed the petaflop level, I/O performance has become a major performance bottleneck for many scientific applications. Several tools exist to collect I/O traces to assist in the analysis of I/O performance problems. However, these tools either produce extremely large trace files that complicate performance analysis, or sacrifice accuracy to collect high-level statistical information. We propose a multi-level trace generator tool, ScalaIOTrace, that collects traces at several levels in the HPC I/O stack. ScalaIOTrace features aggressive trace compression that generates trace files of near constant size for regular I/O patterns and orders of magnitudes smaller for less regular ones. This enables the collection of I/O and communication traces of applications running on thousands of processors.Our contributions also include automated trace analysis to collect selected statistical information of I/O calls by parsing the compressed trace on-the-fly and time-accurate replay of communication events with MPI-IO calls. We evaluated our approach with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.