This paper presents a survey of advanced methods for segmenting the MRI (Magnetic Resonance Imaging) image of the brain. Segmentation of the brain is a challenging task because it requires more emphasized methods to differentiate each of the regions present in the brain image. The intensity differences between the different regions in the brain MRI image are very less, making it difficult to automate the entire segmentation process. Hence, a thorough understanding of the existing segmentation algorithm is essential for accurate segmentation. The segmentation algorithms surveyed in this work are Neural Network Model, Self-Organizing Maps, Radial Basis Function, Back Propagation, Fuzzy C-Means, Deformable Models, Level Set Models, Genetic Algorithm, Differential Evolutionary Algorithm, Hybrid Clustering and Artificial Intelligence. Such a survey would be helpful for researchers working in the field of brain image segmentation. The paper discusses the complexities in the segmentation algorithm and also the challenges in segmenting the brain MRI images. The segmentation outputs and analysis of the existing literature has also been discussed. The major criteria and their advantages in the segmentation of each algorithm have been reported accordingly in the observations.
Gearbox plays a vital role in various fields in the industries. Failure of any component in the gearbox will lead to machine downtime. Vibration monitoring is the technique used for condition based maintenance of gearbox. This paper discusses the use of machine learning techniques for automating the fault diagnosis of automobile gearbox. Our experimental study monitors the vibration signals of actual automobile gearbox with simulated fault conditions in the gear and bearing. Statistical features are extracted and classified for identifying the faults using decision tree and Naïve bayes technique. Comparison of the techniques for determining the classification accuracy is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.