No abstract
In this paper we present a statistical model for the ultra-wideband (UWB) channel in an industrial environment. Based on a set of measurements in a factory hall, we find that the abundance of metallic scatterers causes dense multipath scattering. This can be seen to produce mostly Rayleigh distributed small-scale fading signal, with only a few paths exhibiting Nakagami distributions. For the power delay profile, we suggest a generalization of the Saleh-Valenzuela model where clusters with difference excess delays have different ray power decay constants; the decay constants follow a linear dependence on the delay. This model provides an excellent fit to the measured data. We also note that for non-line-of-sight scenarios at larger distances, several hundred multipath components need to be collected to capture 50% of the available energy. IEEE Vehicular Technology Conference (VTC)This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Abstract-In this paper we present a statistical model for the ultra-wideband (UWB) channel in an industrial environment. Based on a set of measurements in a factory hall, we find that the abundance of metallic scatterers causes dense multipath scattering. This can be seen to produce mostly Rayleigh distributed small-scale fading signal, with only a few paths exhibiting Nakagami distributions. For the power delay profile, we suggest a generalization of the Saleh-Valenzuela model where clusters with different excess delays have different ray power decay constants; the decay constants follow a linear dependence on the delay. This model provides an excellent fit to the measured data. We also note that for non-line-of-sight scenarios at larger distances, several hundred multipath components need to be collected to capture 50% of the available energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.