Agrobacterium tumefaciens is a soil bacterium capable of transferring DNA to the genome of higher plants. Of the virulence region-encoded proteins of the tumor-inducing (Ti) plasmid of A. tumefaciens, the VirD1 and VirD2 proteins are essential for T-DNA transfer to plant cells. These two proteins have been shown to be directly responsible for the formation of T-strands. VirD2 was also shown to be firmly attached to the 5' termini of T-strands; these facts have led to its postulation as a pilot protein in the T-DNA transfer process and as a nucleus-targeting signal in plants. We have constructed a chimeric gene by fusing the virD2 gene and the Escherichia coli lacZ gene. Cell fractionation and electron microscopy studies with transgenic tobacco plants containing the VirD2-LacZ fusion protein indicate that the first 292 amino acids of VirD2 are able to direct the cytoplasmic protein f-galactosidase to the plant nucleus. This provides an example of cross-kingdom nuclear localization between two free-living organisms: a bacterial peptide is capable of acting as a eukaryotic (plant) nuclear targeting signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.