The aim of this study was to clarify the normal function of the inferior head of the human lateral pterygoid muscle (IHLP). The hypothesis was that an important function of the IHLP is in the fine control of horizontal jaw movements. The activities of 99 single motor units (SMUs) were recorded from IHLP (22 recordings from 16 subjects). Most recording sites were identified by computer tomography (CT). All 99 SMUs were active during contralateral jaw movements with the teeth apart, and protrusive jaw movements with the teeth apart, and 81% (48 of 59 units studied during all 3 tasks) were active during submaximal jaw-opening movements. None were active on maximal ipsilateral or retrusive jaw movements with the teeth apart nor on jaw closing/clenching in intercuspal position; nor were they spontaneously active when the jaw was at the clinically determined postural jaw position. Thresholds of SMUs ranged from <0.2 mm of contralateral or protrusive horizontal displacements to 61-89% of the maximum contralateral or protrusive displacement, respectively. For the 35 units continuously active during the contralateral task, 23 (66%) were recruited within 2 mm of contralateral displacement [25 (63% of 40 units) for protrusion]. Recruitment thresholds (mm) of some of the units were rate dependent with thresholds significantly decreasing with increasing rate of horizontal jaw movement in protrusion and contralateral movements. At eight recording sites where up to six SMUs were able to be discriminated, the average thresholds of successively recruited SMUs were within a 1-mm increment of horizontal jaw displacement. After dividing IHLP into four regions, the SMUs recorded in the superior-medial zone exhibited significantly lower mean threshold values than for the SMUs recorded in the other zones (no units were recorded in the inferior-lateral zone). This provides suggestive evidence supporting previously proposed notions of functional heterogeneity within IHLP. Taken together, the data suggest that specific regions of the IHLP are capable of selective activation in a finely controlled manner to allow the application of the appropriate force vector (magnitude and direction) to effect the required condylar movement needed for the generation and control of horizontal jaw movements.
The activity of the superior head of the human lateral pterygoid muscle (SHLP) is controversial. Given the non-parallel alignment of some SHLP fibers, the SHLP may be capable of differential activation. The aims were to clarify SHLP activity patterns in relation to location within SHLP. In 18 subjects, SHLP single motor units were intramuscularly recorded at computer-tomography-verified sites during horizontal (e.g., protrusion) and vertical (e.g., opening) jaw tasks (recorded by a jaw-tracking device) and at resting postural jaw position. None of 92 units was active at the resting postural position. Medially located units (21) showed activity during contralateral movement, protrusion, and opening; 5 were also active on jaw closing. There was a significant association between unit location and the number of units active during vertical tasks (i.e., jaw closing and clenching). Analysis of the data suggests differential activation within SHLP and raises the possibility of functional heterogeneity within SHLP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.