We demonstrate a long-reach wavelength-division-multiplexed passive optical network (WDM PON) operating at the symmetric rate of 10.3 Gb/s. For the cost-effectiveness, we realize the upstream transmission by utilizing directly-modulated TO-can packaged reflective semiconductor optical amplifiers (RSOAs) and digital coherent receivers. In addition, to overcome the limited modulation bandwidth of this TO-can packaged RSOA (~2.2 GHz) and operate it at 10.3 Gb/s, we utilize the quadrature phase shift keying (QPSK) format and the electronic phase equalization technique. The result shows that we can extend the maximum reach of the 10.3-Gb/s RSOA-based WDM PON to ~80 km without using any remote amplifiers.
We propose and demonstrate a 1.25-Gb/s RSOA-based WDM PON employing a novel selfhomodyne receiver. The proposed receiver enables the excellent receiver sensitivity and reflection tolerance, and has potential applications in the long-reach WDM PON with high-split ratio.
We investigate the effects of the gain and position of the remote EDFA in a long-reach RSOA-based WDM PON. Using this result, we also estimate the maximum transmission reach limited by Rayleigh backscattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.