Heterostructures composed of ferromagnetic La 0.7 Sr 0.3 MnO 3 , ferromagnetic SrRuO 3 , and superconducting YBa 2 Cu 3 O 6+x were studied experimentally. Structures of composition Au/La 0.7 Sr 0.3 MnO 3 /SrRuO 3 / YBa 2 Cu 3 O 6+x were prepared by pulsed laser deposition, and their high quality was confirmed by x-ray diffraction and reflectometry. A noncollinear magnetic state of the heterostructures was revealed by means of superconducting quantum interference device magnetometry and polarized neutron reflectometry. We have further observed superconducting currents in mesa structures fabricated by deposition of a second superconducting Nb layer on top of the heterostructure, followed by patterning with photolithography and ion-beam etching. Josephson effects observed in these mesa structures can be explained by the penetration of a triplet component of the superconducting order parameter into the magnetic layers.
Josephson coupling between an s- and d-wave superconductor through a 50 nm thick Ca1-xSrxCuO2 antiferromagnetic layer was observed for the hybrid Nb/Au/Ca1-xSrxCuO2/YBa2Cu3O7-delta heterostructures and investigated as a function of temperature, magnetic field, and applied millimeter-wave electromagnetic radiation. The magnetic field dependence of the supercurrent I(c)(H) exhibits anomalously rapid oscillations, which is the first experimental evidence of the theoretically predicted giant magneto-oscillations in Josephson junctions with antiferromagnetic interlayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.