In Alzheimer's disease the microtubule-associated protein tau becomes hyperphosphorylated and aggregates into paired helical filaments (PHFs). Although the biochemical basis of the aggregation of tau into PHFs is not very clear, Al3+ has been suggested to play some role. Previous studies have shown that Al3+ alters the phosphorylation state and causes aggregation of tau in experimental animals and cultured neurons. In this study Al3+ inhibited phosphorylation of tau by neuronal cdc2-like kinase and dephosphorylation of phosphorylated tau by phosphatase 2B. These inhibitions are very likely due to Al(3+)-induced aggregations of various proteins present in phosphorylation/dephosphorylation assay mixtures since Al3+ caused aggregations of all proteins examined. Furthermore, compared to other proteins, tau displayed only an average sensitivity towards Al(3+)-induced aggregation. However upon phosphorylation, tau's sensitivity towards Al3+ increased 3.5 fold. In the presence of the metal chelator EDTA, Al(3+)-induced aggregates of tau became soluble, whereas Al(3+)-induced phosphorylated tau aggregates were insoluble in the buffer containing EDTA and remained insensitive to proteolysis. Our data suggest that phosphorylation sensitizes tau to Al3+ and phosphorylated tau transforms irreversibly into a phosphatase and protease resistant aggregate in presence of this metal ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.