Hepatitis B virus core (HBc) particles, self‐assemble into capsid particles and are extremely immunogenic, hold promise as an immune‐enhancing vaccine carrier for heterologous antigens. However, formation of virus‐like particles (VLP) can be restricted by size and structure of heterlogous antigens. In the study, we investigated formation of VLP by modified HBc fused with specified foot‐and‐mouth disease virus (FMDV) multiepitopes and evaluated their immune effects. Firstly, three HBc display vectors (pHBc1, pHBc2 and pHBc3) were constructed by deletions of different lengths within the HBc c/e1 region: 75–78 amino acid (aa), 75–80 aa and 75–82 aa respectively. Secondly, we inserted different compositions of FMDV multiepitopes, BT [VP1(141–160)–VP4(21–40)] and BTB [VP1(141–160)–VP4(21–40)–VP1(141–160)], into modified regions. As a result, only plasmid pHBc3‐BTB of six recombinant vectors was expressed as soluble protein, which resulted in the formation of complete VLP confirmed by electron microscopy. Recombinant VLP could be taken up by cells and presented in vitro and in vivo. Furthermore, the modified VLP displayed a significantly stronger immunogenicity than other five recombinant proteins and GST‐BTB with a higher titer of peptide‐specific and virus‐specific antibody, elevated IFN‐γ and interleukin‐4 production, especially enhanced lymphocyte proliferation. The results encourage further work towards the development of FMDV vaccines using hepatitis B virus core particles fused with FMDV epitopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.