The paper presents the calculation and experimental results for investigated unsteady combustion modes in low-emission combustors operating without flow swirling and developed by the present authors.
The effect of initial nonuniformity and fluctuations of fuel concentration on the combustion stability and NOx and CO emission in the model combustion chamber was analyzed with the use of previously developed simple and computationally inexpensive Large Eddy Simulation (LES) methodology for simulation of three-dimensional unsteady turbulent flows with premixed combustion of methane-air mixture in low-emission combustion chamber which geometry is represented by channel with the backward facing step. Typical sizes of the combustion chamber, flow parameters, turbulence level, and method of flame front stabilization are close to those of full-sized industrial combustors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.