Because of the increased temporal and spatial resolutions of the sensors onboard recently launched satellites, satellite-based surface aerosol concentration, which is usually estimated from the aerosol optical depth (AOD), is expected to become a strategic tool for air quality studies in the future. By further exploring the relationships of aerosol concentrations and their optical properties using ground observations, the accuracies of these products can be improved. Here, we analyzed collocated observations of surface mass concentrations of fine particulate matter (PM2.5) and black carbon (BC), as well as columnar aerosol optical properties from a sky radiometer and aerosol extinction profiles obtained by multi-axis differential optical absorption spectroscopy (MAX-DOAS), during the 2019–2020 period. We focused the analyses on a daily scale, emphasizing the role of the ultraviolet (UV) spectral region. Generally, the correlation between the AOD of the fine fraction (i.e., fAOD) and the PM2.5 surface concentration was moderately strong, regardless of considerations of boundary layer humidity and altitude. In contrast, the fAOD of the partial column below 1 km, which was obtained by combining sky radiometer and MAX-DOAS retrievals, better reproduced the variability of the PM2.5 and resulted in a linear relationship. In the same manner, we demonstrated that the absorption AOD of the fine fraction (fAAOD) of the partial column was related to the variability of the BC concentration. Analogous analyses based on aerosol products from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) confirmed these findings and highlighted the importance of the shape of the aerosol profile. Overall, our results indicated a remarkable consistency among the retrieved datasets, and between the datasets and MERRA-2 products. These results confirmed the well-known sensitivity to aerosol absorption in the UV spectral region; they also highlighted the efficacy of combined MAX-DOAS and sky radiometer observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.