A feasibility study of ultrahigh-resolution full-field optical coherence tomography (FF-OCT) for a subcellular-level imaging of human donor corneas is presented. The FF-OCT system employed in this experiment is based on a white light interference microscope, where the sample is illuminated by a thermal light source and a horizontal cross-sectional (en face) image is detected using a charge coupled device (CCD) camera. A conventional four-frame phase-shift detection technique is employed to extract the interferometric image from the CCD output. A 95-nm-broadband full-field illumination yields an axial resolution of 2.0 microm, and the system covers an area of 850 microm x 850 microm with a transverse resolution of 2.4 microm using a 0.3-NA microscope objective and a CCD camera with 512 x 512 pixels. Starting a measurement from the epithelial to the endothelial side, a series of en face images was obtained. From detected en face images, the epithelial cells, Bowman's layer, stromal keratocyte, nerve fiber, Descemet's membrane, and endothelial cell were clearly observed. Keratocyte cytoplasm, its nuclei, and its processes were also separately detected. Two-dimensional interconnectivity of the keratocytes is visualized, and the keratocytes existing between collagen lamellaes are separately extracted by exploiting a high axial resolution ability of FF-OCT.
Continuous LTA demonstrated clusters of lobules fed by a common arteriole, and each cluster was found to be functionally independent. There were regional differences in choriocapillaris flow patterns, which suggests that the choriocapillaris provides a more highly efficient system of outflow in posterior regions than in peripheral regions. This modified LTA method appears to be useful in analyzing choroidal circulation in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.