Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at the National Institute of Radiological Sciences (NIRS), with the size and cost being reduced to one-third of those at NIRS. The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. Between March 2010 and July 2011, a total of 177 patients were treated at GHMC although a total of 100 patients was the design specification during the period in considering the optimal machine performance. In the present article, we introduce the facility set-up of GHMC, including the facility design, treatment planning systems, and clinical preparations.
We propose a strategy of individualized image acquisitions and treatment planning for respiratory-gated carbon-ion therapy. We implemented it in clinical treatments for diseases of mobile organs such as lung cancers at the Gunma University Heavy Ion Medical Center in June 2010. Gated computed tomography (CT) scans were used for treatment planning, and four-dimensional (4D) CT scans were used to evaluate motion errors within the gating window to help define the internal margins (IMs) and planning target volume for each patient. The smearing technique or internal gross tumor volume (IGTV = GTV + IM), where the stopping power ratio was replaced with the tumor value, was used for range compensation of moving targets. Dose distributions were obtained using the gated CT images for the treatment plans. The influence of respiratory motion on the dose distribution was verified with the planned beam settings using 4D CT images at some phases within the gating window before the adoption of the plan. A total of 14 lung cancer patients were treated in the first year. The planned margins with the proposed method were verified with clinical X-ray set-up images by deriving setup and internal motion errors. The planned margins were considered to be reasonable compared with the errors, except for large errors observed in some cases.
We have studied charged nuclear fragments produced by 200 -400 MeV/nucleon carbon ions, interacting with water and polycarbonate, using a newly developed emulsion detector. Total and partial charge-changing cross sections for the production of B, Be, and Li fragments were measured and compared with both previously published measurements, and model predictions. This study is of importance for validating and improving carbon ion therapy treatment planning systems, and for estimating the radiological risks for personnel on space missions, since carbon is a significant component of the Galactic Cosmic Rays. PACS numbers: 25.70.Mn,
We have upgraded a heavy-ion radiotherapy treatment-planning system to adapt for the layer-stacking irradiation method, which is to conform a variable SOBP to a target volume by means of dynamic control of the conventional beam-modifying devices. The biophysical model, the beam-setup logic, and the dose-calculation algorithm implemented for the layer-stacking method are described and the expected clinical usability is discussed.The layer-stacking method was integrated in perfect accordance with the ongoing conventional treatments so that the established protocols, which are the clinically optimized dose fractionation schemes, will still be valid. On the other hand, a simulation study indicated a substantial improvement of dose distribution with the 3 layer-stacking method though the significance may depend on the size, shape, and location of the tumor. The completed treatment system will provide an option for improved conformal radiotherapy without interfering with the conventional method and we expect a gradual expansion of the clinical cases applicable to the layer-stacking method.
Spread-out Bragg peaks made by ridge filters or wheel range modulators are used in charged particle therapy with passive methods to achieve uniform biological responses in irradiated tumors. Following the biological responses needed to design the ridge filters, which were developed at the National Institute of Radiological Sciences in Japan, new ridge filters were designed using recent developments in heavy-ion reactions and dosimetry. The Monte Carlo code of Geant4 was used to calculate the qualities of carbon ion beams in a water phantom. The results obtained from the simulation were corrected so that they agreed with the measurements of depth dose distributions. The calculations of biological responses to fragments other than carbon ions were assumed to be for helium ions. The measured dose distributions with the designed ridge filters were compared to the calculated distributions. A beam modifying system using this adaptable method was successively applied to carbon ion therapy at Gunma University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.