We use a 1‐D numerical model to study the atmospheric photochemistry of oxygen, methane, and sulfur after the advent of oxygenic photosynthesis. We assume that mass‐independent fractionation (MIF) of sulfur isotopes – characteristic of the Archean – was best preserved in sediments when insoluble elemental sulfur (S8) was an important product of atmospheric photochemistry. Efficient S8 production requires three things: (i) very low levels of tropospheric O2; (ii) a source of sulfur gases to the atmosphere at least as large as the volcanic SO2 source today; and (iii) a sufficiently high abundance of methane or other reduced gas. All three requirements must be met. We suggest that the disappearance of a strong MIF sulfur signature at the beginning of the Proterozoic is better explained by the collapse of atmospheric methane, rather than by a failure of volcanism or the rise of oxygen. The photochemical models are consistent in demanding that methane decline before O2 can rise (although they are silent as to how quickly), and the collapse of a methane greenhouse effect is consistent with the onset of major ice ages immediately following the disappearance of MIF sulfur. We attribute the decline of methane to the growth of the oceanic sulfate pool as indicated by the widening envelope of mass‐dependent sulfur fractionation through the Archean. We find that a given level of biological forcing can support either oxic or anoxic atmospheres, and that the transition between the anoxic state and the oxic state is inhibited by high levels of atmospheric methane. Transition from an oxygen‐poor to an oxygen‐rich atmosphere occurs most easily when methane levels are low, which suggests that the collapse of methane not only caused the end of MIF S and major ice ages, but it may also have enabled the rise of O2. In this story the early Proterozoic ice ages were ended by the establishment of a stable oxic atmosphere, which protected a renewed methane greenhouse with an ozone shield.
The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. We suggest here that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. The concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, which is a strong function of temperature. Hence, it would have depended on the magnitude of the atmospheric greenhouse effect. Surface temperatures of 45 degrees C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. Two additional requirements are that the ocean was saturated with sulfite and bisulfite, and that linear S8 chains must tend to reform rings faster than they are destroyed by photolysis. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.
Abstract. We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of −50 W m −2 during the late Archean), but geological evidence points to the Earth having been at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduced the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a forcing of +25 W m −2 whilst more modest reduction in their efficacy gives a forcing of +10 to +15 W m −2 . For high clouds, the greenhouse effect dominates. It is possible to generate +50 W m −2 forcing from enhancing these, but this requires making them 3.5 times thicker and 14 K colder than the standard high cloud in our nominal set and expanding their coverage to 100% of the sky. Such changes are not credible. More plausible changes would generate no more than +15 W m −2 forcing. Thus neither fewer low clouds nor more high clouds can provide enough forcing to resolve the FYSP. Decreased surface albedo can contribute no more than +5 W m −2 forcing. Some models which have been applied to the FYSP do not include clouds at all. These overestimate the forcing due to increased CO 2 by 20 to 25% when pCO 2 is 0.01 to 0.1 bar.
We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 W m<sup>−2</sup> during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a forcing of +25 W m<sup>−2</sup> whilst more modest reduction in their efficacy gives a forcing of +10 to +15 W m<sup>−2</sup>. For high clouds, the greenhouse effect dominates. It is possible to generate +50 W m<sup>−2</sup> forcing from enhancing these, but this requires making them 3.5 times thicker and 14 K colder than the standard high cloud in our nominal set and expanding their coverage to 100% of the sky. Such changes are not credible. More plausible changes would generate no more that +15 W m<sup>−2</sup> forcing. Thus neither fewer low clouds nor more high clouds can provide enough forcing to resolve the FYSP. Decreased surface albedo can contribute no more than +5 W m<sup>−2</sup> forcing. Some models which have been applied to the FYSP do not include clouds at all. These overestimate the forcing due to increased CO<sub>2</sub> by 20 to 25% when <i>p</i>CO<sub>2</sub> is 0.01 to 0.1 bar
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.