silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (2012, Science 338: 1481-1484) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high-throughput pipeline to operationalize this result so that we can (1) test competing explanations for tropical arthropod megadiversity, (2) improve estimates of global eukaryotic species diversity, and (3) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaisetrap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous, and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.