This paper compares the oxygen reduction on four MnO2‐based air cathodes assembled in home‐made electrochemical cells, with some particular observations on α‐MnO2 cathode. The results show that the catalytic activity decreases in the following order: electrolytic MnO2 (EMD) > natural MnO2 (NMD) > β‐MnO2 > α‐MnO2. The maximum power density of the zinc‐air battery with EMD as the catalyst reaches up to 141.8 mW cm−2 at the current density of 222.5 mA cm−2, which is about 60%, 20% and 10% higher than that of α‐MnO2 (90.0 mW cm−2 at 120.3 mA cm−2), β‐MnO2 (121.5 mW cm−2 at 150.4 mA cm−2) and NMD (128.2 mW cm−2 at 207.8 mA cm−2), respectively. It is believed that its unique crystal structure and biggest BET surface area make EMD have the smallest charge transfer resistance (Rct), thus EMD has the highest activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.