Soybean [ Glycine max (L.) Merr.] sudden death syndrome (SDS) caused by Fusarium solani f. sp. glycines results in severe yield losses. Resistant cultivars offer the most-effective protection against yield losses but resistant cultivars such as 'Forrest' and 'Pyramid' vary in the nature of their response to SDS. Loci underlying SDS resistance in 'Essex' x Forrest are well defined. Our objectives were to identify and characterize loci and alleles that underlie field resistance to SDS in Pyramidx'Douglas'. SDS disease incidence and disease severity were determined in replicated field trials in six environments over 4 years. One hundred and twelve polymorphic DNA markers were compared with SDS disease response among 90 recombinant inbred lines from the cross PyramidxDouglas. Two quantitative trait loci (QTLs) for resistance to SDS derived their beneficial alleles from Pyramid, identified on linkage group G by BARC-Satt163 (261-bp allele, P=0.0005, R(2)=16.0%) and linkage group N by BARC-Satt080 (230-bp allele, P=0.0009, R(2)=15.6%). Beneficial alleles of both QTLs were previously identified in Forrest. A QTL for re- sistance to SDS on linkage group C2 identified by BARC-Satt307 (292-bp allele, P=0.0008, R(2)=13.6%) derived the beneficial allele from Douglas. A beneficial allele of this QTL was previously identified in Essex. Recombinant inbred lines that carry the beneficial alleles for all three QTLs for resistance to SDS were significantly ( P=0.05) more resistant than other recombinant inbred lines. Among these recombinant inbred lines resistance to SDS was environmentally stable. Therefore, gene pyramiding will be an effective method for developing cultivars with stable resistance to SDS.
Large DNA insert libraries in binary T-DNA vectors can assist in the isolation of the gene(s) underlying a quantitative trait locus (QTL). Binary vectors facilitate the transfer of large-insert DNA fragments containing a QTL from E. coli to Agrobacterium sp. and then to plants. We constructed two soybean large-insert libraries from cv. Forrest in the pCLD04541 (V41) binary vector after partial digestion of genomic high-molecular-weight DNA with BamHI or HindIII. The libraries contain 76,800 clones with an average insert size of 125 kb, and therefore represent 9.5-fold haploid genome equivalents. Colony hybridization using a chloroplast-specific probe infers that the libraries contain less than 0.5% clones of chloroplast DNA origin. These two libraries have provided clones for physical mapping of the soybean genome and for isolation of a number of disease resistance genes. One microsatellite marker was identified from the clone that hybridized to the Bng122 RFLP probe. The sequence-tagged site was used for genetic mapping and marker-assisted selection for genes underlying resistance to the soybean cyst nematode and sudden death syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.