Our previous results showed that embryotrophic factor-3 (ETF-3) from human oviductal cells increased the size and hatching rate of mouse blastocysts in vitro. The present study investigated the production of ETF-3 by an immortalized human oviductal cell line (OE-E6/E7) and the effects of ETF-3 on the mRNA expression of mouse embryos. The ETF-3 was purified from primary oviductal cell conditioned media using sequential liquid chromatographic systems, and antiserum against ETF-3 was raised. The ETF-3-supplemented Chatot-Ziomek-Bavister medium was used to culture Day 1 MF1 x BALB/c mouse embryos for 4 days. The ETF-3 treatment significantly enhanced the mouse embryo blastulation and hatching rate. The antiserum, at concentrations of 0.03-3%, abolished the embryotrophic effect of ETF-3. Positive ETF-3 immunoreactivity was detected in the primary oviductal cells, OE-E6/E7, and blastocysts derived from ETF-3 treatment. Vero cells (African Green Monkey kidney cell line), fibroblasts, and embryos cultured in control medium did not possess ETF-3 immunoreactivity. The mRNA expression patterns of the treated embryos were studied at the blastocyst stage by mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The DDRT-PCR showed that some of the mRNAs were differentially expressed after ETF-3 treatment. Twelve of the differentially expressed mRNAs that had high homology with cDNA sequences in the GenBank were selected for further characterization. The differential expression of seven of these mRNAs (ezrin, heat shock 70-kDa protein, cytochrome c oxidase subunit VIIa-L precursor, proteinase-activated receptor 2, eukaryotic translation initiation factor 2beta, cullin 1, and proliferating cell nuclear antigen) was confirmed by semiquantitative RT-PCR. In conclusion, immortalized oviductal cells produce ETF-3, which influences mRNA expression of mouse blastocyst.
In mammal, fertilization and early preimplantation embryo development occurs in the oviduct. Evidence is accumulating that the oviductal epithelia secrete various biomolecules to the lumen during the secretory phase of the estrus cycle to enhance embryo development. This secretory activity of the oviduct is under the regulation of steroid hormones. Observations also suggested that the gametes and embryos modulate the physiology and gene-expressing pattern of the oviduct. However, the underlying molecular changes remain elusive. We hypothesize that the developing embryos interact with the surrounding environment and affect the gene expression patterns of the oviduct, thereby modulating the oviductal secretory activity conducive to the preimplantation embryo development. To test this hypothesis, suppression subtractive hybridization (SSH) was used to compare the gene expressions in mouse oviduct containing transferred in vitro cultured preimplantation embryos with that of oviduct containing oocytes during the preimplantation period. We reported here the identification and characterization of phospholipids transfer protein (PLTP), which is highly expressed in the embryo-containing oviduct and localized at the oviductal epithelium by in situ hybridization. PLTP contains signal peptide putative for secretory function. More importantly, PLTP mRNA increases in the oviductal epithelia of pregnant, but not pseudo-pregnant mice when assayed by real-time PCR. Taken together, our data suggested that PLTP may play important role(s) during in vivo preimplantation embryo development. This molecule would be a target to delineate the mechanisms and the roles of oviductal secretory proteins on early embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.