Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.
We describe a new method to allow simultaneous mapping of endothelial permeability and blood volume in intracranial lesions. The technique is based on a tumor leakage profile during the first pass (fp) of contrast bolus calculated from the time‐dependent plasma‐contrast concentration function (PCCF) in three‐dimensional (3D) T1‐weighted dynamic studies. The performance of the method has been evaluated by comparing results with those obtained from more conventional methods in patients with primary brain neoplasms. The new permeability maps (kfp) are visually compatible with those calculated using a conventional multicompartment model (ktran). Quantitatively, the new maps are free from overestimation of ktran due to first‐pass effects. The new blood volume maps, which segment out the contamination of contrast leakage, agree closely with maps derived from susceptibility studies. The new method is fast, robust, and easy to perform. The method is suitable for use in clinical environments and is likely to be of benefit where longitudinal assessment of treatment response is required. J. Magn. Reson. Imaging 2000;12:347–357. © 2000 Wiley‐Liss, Inc.
BackgroundInflammation is hypothesized to be a key event in the growth of sporadic vestibular schwannoma (VS). In this study we sought to investigate the relationship between inflammation and tumor growth in vivo using the PET tracer 11C-(R)-PK11195 and dynamic contrast enhanced (DCE) MRI derived vascular biomarkers.MethodsNineteen patients with sporadic VS (8 static, 7 growing, and 4 shrinking tumors) underwent prospective imaging with dynamic 11C-(R)-PK11195 PET and a comprehensive MR protocol, including high temporal resolution DCE-MRI in 15 patients. An intertumor comparison of 11C-(R)-PK11195 binding potential (BPND) and DCE-MRI derived vascular biomarkers (Ktrans, vp, ve) across the 3 different tumor growth cohorts was undertaken. Tissue of 8 tumors was examined with immunohistochemistry markers for inflammation (Iba1), neoplastic cells (S-100 protein), vessels (CD31), the PK11195 target translocator protein (TSPO), fibrinogen for vascular permeability, and proliferation (Ki-67). Results were correlated with PET and DCE-MRI data.ResultsCompared with static tumors, growing VS displayed significantly higher mean 11C-(R)-PK11195 BPND (−0.07 vs 0.47, P = 0.020), and higher mean tumor Ktrans (0.06 vs 0.14, P = 0.004). Immunohistochemistry confirmed the imaging findings and demonstrated that TSPO is predominantly expressed in macrophages. Within growing VS, macrophages rather than tumor cells accounted for the majority of proliferating cells.ConclusionWe present the first in vivo imaging evidence of increased inflammation within growing sporadic VS. Our results demonstrate that 11C-(R)-PK11195 specific binding and DCE-MRI derived parameters can be used as imaging biomarkers of inflammation and vascular permeability in this tumor group.
We describe a new method to allow simultaneous mapping of endothelial permeability and blood volume in intracranial lesions. The technique is based on a tumor leakage profile during the first pass (fp) of contrast bolus calculated from the time-dependent plasma-contrast concentration function (PCCF) in three-dimensional (3D) T1-weighted dynamic studies. The performance of the method has been evaluated by comparing results with those obtained from more conventional methods in patients with primary brain neoplasms. The new permeability maps (k fp ) are visually compatible with those calculated using a conventional multicompartment model (k tran ). Quantitatively, the new maps are free from overestimation of k tran due to first-pass effects. The new blood volume maps, which segment out the contamination of contrast leakage, agree closely with maps derived from susceptibility studies. The new method is fast, robust, and easy to perform. The method is suitable for use in clinical environments and is likely to be of benefit where longitudinal assessment of treatment response is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.