Solitary fibrous tumors (SFTs) are NAB2-STAT6 fusion-associated neoplasms. There are several subtypes of NAB2-STAT6 fusions, but their clinical significances are still unclear. Moreover, the mechanisms of malignant progression are also poorly understood. In this study, using 91 SFT cases, we examined whether fusion variants are associated with clinicopathological parameters and also investigated the molecular mechanism of malignant transformation using whole-exome sequencing. We detected variant 1b (NAB2ex4-STAT6ex2) in 51/91 (56%) cases and variants 2a/2b (NAB2ex6-STAT6ex16/17) in 17/91 (19%) cases. The NAB2-STAT6 fusion variant types were significantly associated with their primary site (P < 0.001). In addition, a TERT promoter mutation was detected in 7/73 (10%) cases, and it showed a significant association with malignant SFTs (P = 0.003). To identify molecular changes during malignant progression, we selected an index patient to obtain parallel tissue samples from the primary and metastatic tumors. In the metastatic tissue, 10 unique molecular alterations, including those in TP53 and APAF1, were detected. In vitro functional experiments showed that APAF1 depletion increased the tumor potency of cells expressing NAB2-STAT6 fusion protein under treatment with staurosporine. We found that TP53 immunopositivity (P = 0.006) and loss of APAF1 immunoreactivity (P < 0.001) were significantly associated with malignant SFTs. Our study suggests that dysfunction of TP53 and APAF1 leads to impaired apoptotic function, and eventually contributes toward malignant SFT transformation.Key messages We firstly found that the TERT promoter mutation was strongly associated with malignant SFTs (P = 0.003) and the representative 1b (NAB2ex4-STAT6ex2) or 2a (NAB2ex6-STAT6ex16) fusion variants similarly contribute to tumorigenicity.We also found that TP53 immunopositivity (P = 0.006) and loss of APAF1 immunoreactivity (P < 0.001) were significantly associated with malignant SFTs.Our study suggests that dysfunction of TP53 and APAF1 leads to impaired apoptotic function, and eventually contributes toward malignant SFT transformation. Electronic supplementary materialThe online version of this article (10.1007/s00109-019-01815-8) contains supplementary material, which is available to authorized users.
Purpose: Pleomorphic dermal sarcoma (PDS) is a rare malignant cutaneous tumor with an unknown cell of origin. Locally defined tumors can be treated by curative excisions, whereas advanced stages of the disease are difficult to treat, using standard regimens.Experimental Design: We performed whole-exome sequencing on a cohort of 28 individuals and corresponding transcriptomic analysis on 21 patients, as well as quantitative IHC image analysis on 27 patients.Results: PDS exhibits a universally high mutational load (42.7 mutations/mega base) with an inflamed, immunogenic tumor microenvironment. Three cases of PDS showed response to immune checkpoint blockade. Local mutation rate variation together with mRNA expression data demonstrate that PDS form a distinct entity, with PDGFRB as a lineage marker. In addition, we found that PDS is of mesenchymal, fibroblastic differentiation.Conclusions: PDS is of fibroblastic differentiation and exhibits a strong susceptibility to immunotherapy, including a high mutational burden and an inflamed tumor microenvironment.
Most anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancers (NSCLCs) show good clinical response to ALK inhibitors. However, some ALK-rearranged NSCLC patients show various primary responses with unknown reasons. Previous studies focused on the clinical aspects of ALK fusions in small cohorts, or were conducted in vitro and/or in vivo to investigate the function of ALK. One of the suggested theories describes how echinoderm microtubule-associated protein-like 4 (EML4)-ALK variants play a role towards different sensitivities in ALK inhibitors. Until now, there has been no integrated comprehensive study that dissects ALK at the molecular level in a large scale. Here, we report the largest extensive molecular analysis of 158 ALK-rearranged NSCLCs and have investigated these findings in a cell line construct experiment. We discovered that NSCLCs with EML4-ALK short forms (variant 3/others) had more advanced stage and frequent metastases than cases with the long forms (variant 1/others) (p = 0.057, p < 0.05). In vitro experiments revealed that EML4-ALK short forms show lower sensitivity to ALK inhibitors than do long forms. Clinical analysis also showed a trend for the short forms showing worse PFS. Interestingly, we found that breakpoints of ALK are evenly distributed mainly in intron 19 and almost all of them undergo a non-homologous end-joining repair to generate ALK fusions. We also discovered four novel somatic ALK mutations in NSCLC (T1151R, R1192P, A1280V, and L1535Q) that confer primary resistance; all of them showed strong resistance to ALK inhibitors, as G1202R does. Through targeted deep sequencing, we discovered three novel ALK fusion partners (GCC2, LMO7, and PHACTR1), and different ALK fusion partners showed different intracellular localization. With our findings that the EML4-ALK variants, new ALK somatic mutations, and novel ALK-fusion partners may affect sensitivity to ALK inhibitors, we stress the importance of targeted therapy to take the ALK molecular profiling into consideration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.