More and more satellites are populating the sky nowadays in the Low Earth orbits (LEO). Most of the targeted applications are related to broadband and narrowband communications, Earth observation, synthetic aperture radar, and internet-of-Things (IoT) connectivity. In addition to these targeted applications, there is yet-to-be-harnessed potential for LEO and positioning, navigation, and timing (PNT) systems, or what is nowadays referred to as LEO-PNT. No commercial LEO-PNT solutions currently exist and there is no unified research on LEO-PNT concepts. Our survey aims to fill the gaps in knowledge regarding what a LEO-PNT system entails, its technical design steps and challenges, what physical layer parameters are viable solutions, what tools can be used for a LEO-PNT design (e.g., optimisation steps, hardware and software simulators, etc.), the existing models of wireless channels for satellite-toground and ground-to-satellite propagation, and the commercial prospects of a future LEO-PNT system. A comprehensive and multidisciplinary survey is provided by a team of authors with complementary expertise in wireless communications, signal processing, navigation and tracking, physics, machine learning, Earth observation, remote sensing, digital economy, and business models.
Future autonomous transportation is one of the most demanding application areas in terms of connectivity, as it has to simultaneously meet stringent criteria that do not typically go hand in hand, such as high throughput, low latency, high coverage/availability, high positioning and sensing accuracies, high security and robustness to interferences, etc. In order to meet the future demands of challenging applications, such as applications relying on autonomous vehicles, terrestrial networks are no longer sufficient and are to be augmented in the future with satellite-based networks. Among the emerging satellite networks, Low Earth Orbit (LEO) networks are able to provide advantages over traditional Medium Earth Orbit (MEO) and Geo-Stationary Earth Orbit (GEO) networks in terms of signal latency, cost, and performance. Nevertheless, several challenges exist in LEO system design, which have not been fully addressed in the existing literature. In particular, the problem of LEO-system optimization of design parameters is a multi-dimensional problem with many aspects to be considered. This paper offers a comprehensive survey of the LEO-system design parameters, of the challenges in LEO system design process, and of the optimization methods for satellite communication, positioning, and sensing applications, as well as a summarizing discussion on the design considerations for LEO-based networks to support future autonomous transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.