Evidence of reduced blood-brain barrier (BBB) integrity preceding other Alzheimer's disease (AD) pathology provides a strong link between cerebrovascular angiopathy and AD. However, the “Vascular hypothesis”, holds that BBB leakiness in AD is likely due to hypoxia and neuroinflammation leading to vascular deterioration and apoptosis. We propose an alternative hypothesis: amyloidogenesis promotes extensive neoangiogenesis leading to increased vascular permeability and subsequent hypervascularization in AD. Cerebrovascular integrity was characterized in Tg2576 AD model mice that overexpress the human amyloid precursor protein (APP) containing the double missense mutations, APPsw, found in a Swedish family, that causes early-onset AD. The expression of tight junction (TJ) proteins, occludin and ZO-1, were examined in conjunction with markers of apoptosis and angiogenesis. In aged Tg2576 AD mice, a significant increase in the incidence of disrupted TJs, compared to age matched wild-type littermates and young mice of both genotypes, was directly linked to an increased microvascular density but not apoptosis, which strongly supports amyloidogenic triggered hypervascularity as the basis for BBB disruption. Hypervascularity in human patients was corroborated in a comparison of postmortem brain tissues from AD and controls. Our results demonstrate that amylodogenesis mediates BBB disruption and leakiness through promoting neoangiogenesis and hypervascularity, resulting in the redistribution of TJs that maintain the barrier and thus, provides a new paradigm for integrating vascular remodeling with the pathophysiology observed in AD. Thus the extensive angiogenesis identified in AD brain, exhibits parallels to the neovascularity evident in the pathophysiology of other diseases such as age-related macular degeneration.
Dendritic cells (DCs) can present extracellularly derived antigens in the context of major histocompatibility complex (MHC) class I molecules, a process called cross-presentation. Although recognized to be important for priming of T cell responses to many viral, bacterial and tumor antigens, the mechanistic details of this alternative antigen-presentation pathway are poorly understood. We demonstrate here the existence of an endolysosomal compartment in DCs where exogenously derived peptides can be acquired for presentation to T cells, and show that the MHC class I cytoplasmic domain contains a tyrosine-based targeting signal required for routing MHC class I molecules through these compartments. We also report that transgenic mice expressing H-2K(b) with a tyrosine mutation mount inferior H-2K(b)-restricted cytotoxic T lymphocyte responses against two immunodominant viral epitopes, providing evidence of a crucial function for cross-priming in antiviral immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.