Nerve growth factor (NGF) is important for the survival and maintenance of central cholinergic neurons, a signalling system impaired in Alzheimer’s disease. We have treated 3 patients with Alzheimer’s disease with a total of 6.6 mg NGF administered continuously into the lateral cerebral ventricle for 3 months in the first 2 patients and a total of 0.55 mg for 3 shorter periods in the third patient. The patients were extensively evaluated with clinical, neuropsychological, neurophysiological and neuroradiological techniques. Three months after the NGF treatment ended, a significant increase in nicotine binding was found in several brain areas in the first 2 patients and in the hippocampus in the third patient as studied by positron emission tomography. A clear cognitive amelioration could not be demonstrated, although a few neuropsychology tests showed slight improvements. The amount of slow-wave cortical activity as studied by electroencephalography was reduced in the first 2 patients. Two negative side effects occurred with NGF treatment: first, a dull, constant back pain was observed in all 3 patients, which in 1 patient was aggravated by axial loading resulting in sharp, shooting pain of short duration. When stopping the NGF infusion, the pain disappeared within a couple of days. Reducing the dose of NGF lessened the pain. Secondly, a marked weight reduction during the infusion with a clear weight gain after ending the infusion was seen in the first 2 patients. We conclude from this limited trial that, while long-term intracerebroventricular NGF administration may cause certain potentially beneficial effects, the intraventricular route of administration is also associated with negative side effects that appear to outweigh the positive effects of the present protocol. Alternative routes of administration, and/or lower doses of NGF, perhaps combined with low doses of other neurotrophic factors, may shift this balance in favor of positive effects.
Based on animal research suggesting that nerve growth factor (NGF) can stimulate central cholinergic neurons, the known losses of cholinergic innervation of the cortices in Alzheimer's disease (AD), and our experience of infusing NGF to support adrenal grafts in parkinsonian patients, we have initiated clinical trials of NGF infusions into the brain of patients with AD. Here we report a follow-up of our first case, a 69-year-old woman, with symptoms of dementia since 8 years. Intraventricular infusion of 6.6 mg NGF during three months resulted in a marked transient increase in uptake and binding of 11C-nicotine in frontal and temporal cortex and a persistent increase in cortical blood flow as measured by PET as well as progressive decreases of slow wave EEG activity. After one month of NGF, tests of verbal episodic memory were improved whereas other cognitive tests were not. No adverse effects could be ascribed to the NGF infusion. Taken together, the results of this case study indicate that NGF may counteract cholinergic deficits in AD, and suggest that further clinical trials of NGF infusion in AD are warranted.
Background and Purpose-Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) causes repeated ischemic attacks leading to subcortical vascular dementia. The aim of this study was to characterize cognitive function in subjects with a C475T (R133C) mutation in the Notch3 gene, leading to CADASIL. Methods-Prestroke (nϭ13) and poststroke (nϭ13) mutation carriers and mutation carriers with dementia (nϭ8) were compared with healthy noncarriers from the same families using a comprehensive set of neuropsychological tests. Results-Changes in working memory and executive function were observed in the very early phase of the disease before transient ischemic attack (TIA) or stroke. Later, in the poststroke phase, the cognitive impairment concerned also mental speed and visuospatial ability. Finally, the subjects with dementia had multiple cognitive deficits, which engaged even verbal functions, verbal episodic memory, and motor speed. The 2 mutation carrier groups without dementia and the controls could be reliably distinguished using 3 tests that assessed working memory/attention, executive function, and mental speed. Episodic memory was relatively well-preserved late in the disease. Conclusion-A deterioration of working memory and executive function was already observed in the prestroke phase, which means that cognitive decline may start insidiously before the first onset of symptomatic ischemic episodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.