Single nucleotide polymorphism (SNP) data enable the estimation of inbreeding at the genome level. In this study, we estimated inbreeding levels for 19,075 Finnish Ayrshire cows genotyped with a low-density SNP panel (8K). The genotypes were imputed to 50K density, and after quality control, 39,144 SNPs remained for the analysis. Inbreeding coefficients were estimated for each animal based on the percentage of homozygous SNPs (F ), runs of homozygosity (F ) and pedigree (F ). Phenotypic records were available for 13,712 animals including non-return rate (NRR), number of inseminations (AIS) and interval from first to last insemination (IFL) for heifers and up to three parities for cows, as well as interval from calving to first insemination (ICF) for cows. Average F was 0.02, F 0.06 and F 0.63. A correlation of 0.71 was found between F and F , 0.66 between F and F and 0.94 between F and F . Pedigree-based inbreeding coefficients did not show inbreeding depression in any of the traits. However, when F or F was used as a covariate, significant inbreeding depression was observed; a 10% increase in F was associated with 5 days longer IFL0 and IFL1, 2 weeks longer IFL3 and 3 days longer ICF2 compared to non-inbred cows.
Joint Nordic (Denmark, Finland, Sweden) genetic evaluation of female fertility is currently based on the multiple trait multilactation animal model (BLUP). Here, single step genomic model (ssGBLUP) was applied for the Nordic Red dairy cattle fertility evaluation. The 11 traits comprised of nonreturn rate and days from first to last insemination in heifers and first three parities, and days from calving to first insemination in the first three parities. Traits had low heritabilities (0.015-0.04), but moderately high genetic correlations between the parities (0.60-0.88). Phenotypic data included 4,226,715 animals with records and pedigree 5,445,392 animals. Unknown parents were assigned into 332 phantom parent groups (PPG). In mixed model equations animals were associated with PPG effects through the pedigree or both the pedigree and genomic information. Genotype information of 46,914 SNPs was available for 33,969 animals in the pedigree. When PPG used pedigree information only, BLUP converged after 2,420 iterations whereas the ssGBLUP evaluation needed over ten thousand iterations. When the PPG effects were solved accounting both the pedigree and the genomic information, the ssGBLUP model converged after 2,406 iterations. Also, with the latter model breeding values by ssGBLUP and BLUP became more consistent and genetic trends followed each other well. Models were validated using forward prediction of the young bulls. Reliabilities and variance inflation of predicted genomic breeding values (values for parent averages in brackets) for the 11 traits ranged 0.22-0.31 (0.10-0.27) and 0.81-0.95 (0.83-1.06), respectively. The ssGBLUP model gave always higher validation reliabilities than BLUP, but largest increases were for the cow fertility traits.
SummarySingle-step genomic BLUP (ssGBLUP) requires a dense matrix of the size equal to the number of genotyped animals in the coefficient matrix of mixed model equations (MME). When the number of genotyped animals is high, solving time of MME will be dominated by this matrix. The matrix is the difference of two inverse relationship matrices: genomic (G) and pedigree (A 22 ison with the regular ssGBLUP, the total computing time decreased due to omitting the inversion of the relationship matrix A 22 . When APY used 10,000(20,000) animals in the core, the computing time per iteration was at most 0.44 (0.63) min by all the APY alternatives. A core of 10,000 animals in APY gaveGEBVs sufficiently close to those by regular ssGBLUP but needed only 25% of the total computing time. The developed approaches to invert the two relationship matrices are expected to allow much higher number of genotyped animals than was used in this study.
This paper's objectives were to estimate the genetic (co)variance components of the Gompertz growth curve parameters and to evaluate the relationship of estimated breeding values (EBV) based on average daily gain (ADG) and Gompertz growth curves. Finnish Yorkshire central test station performance data was obtained from the Faba Breeding (Vantaa, Finland). The final data set included 121,488 weight records from 10,111 pigs. Heritability estimates for the Gompertz growth parameters mature weight (alpha), logarithm of mature weight to birth weight ratio (beta) and maturation rate (kappa) were 0.44, 0.55 and 0.31, respectively. Genotypic and phenotypic correlations between the growth curve parameters were high and mainly negative. The only positive relationship was found between alpha and beta. Pearson and Spearman rank correlation coefficients between EBV for ADG and daily gain calculated from Gompertz growth curves were 0.79. The Spearman rank correlation between the sire EBV for ADG and Gompertz growth curve parameter-based ADG for all sires with at least 15 progeny was 0.86. Growth curves differ significantly between individuals and this information could be utilized for selection purposes when improving growth rate in pigs.
Background: Cattle international genetic evaluations allow the comparison of estimated breeding values (EBV) across different environments, i.e. countries. For international evaluations, across-country genetic correlations (r g) need to be estimated. However, lack of convergence of the estimated parameters and high standard errors of the r g are often experienced for beef cattle populations due to limited across-country genetic connections. Furthermore, using all available genetic connections to estimate r g is prohibitive due to computational constraints, thus sub-setting the data is necessary. Our objective was to investigate and compare the impact of strategies of data sub-setting on estimated across-country r g and their computational requirements. Methods: Phenotype and pedigree information for age-adjusted weaning weight was available for ten European countries and 3,128,338 Limousin beef cattle males and females. Using a Monte Carlo based expectation-maximization restricted maximum likelihood (MC EM REML) methodology, we estimated across-country r g by using a multi-trait animal model where countries are modelled as different correlated traits. Values of r g were estimated using the full data and four different sub-setting strategies that aimed at selecting the most connected herds from the largest population. Results: Using all available data, direct and maternal r g (standard errors in parentheses) were on average equal to 0.79 (0.14) and 0.71 (0.19), respectively. Direct-maternal within-country and between-country r g were on average equal to − 0.12 (0.09) and 0.00 (0.14), respectively. Data sub-setting scenarios gave similar results: on average, estimated r g were smaller compared to using all data for direct (0.02) and maternal (0.05) genetic effects. The largest differences were obtained for the direct-maternal within-country and between-country r g , which were, on average 0.13 and 0.12 smaller compared to values obtained by using all data. Standard errors always increased when reducing the data, by 0.02 to 0.06, on average. The proposed sub-setting strategies reduced the required computing time up to 22% compared to using all data. Conclusions: Estimating all 120 across-country r g that are required for beef cattle international evaluations, using a multi-trait MC EM REML approach, is feasible but involves long computing time. We propose four strategies to reduce computational requirements while keeping a multi-trait estimation approach. In all scenarios with data sub-setting, the estimated r g were consistently smaller (mainly for direct-maternal r g) and had larger standard errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.