We have developed a novel oseltamivir derivative (oseltamivir hexylthiol; OHT) that exhibits a higher binding affinity for Tamiflu-resistant virus (Tamiflu resistance) than for the wild-type virus (Tamiflu-susceptible virus; WT) as an antibody. First, OHT-modified gold nanoparticles (OHT-GNPs) are used in a simple colorimetric assay as nanoprobes for the Tamiflu-resistant virus. In the presence of Tamiflu-resistant virus, they show a colorimetric change from deep red to purple because of the OHT-GNP aggregation driven by strong interactions between OHT and neuraminidase (NA) on the surface of the Tamiflu-resistance. Moreover, the color gradually turns purple as the concentration of the Tamiflu-resistant virus increases, allowing the determination of the presence of the virus with the naked eye. Furthermore, an OHT-based lateral flow assay (LFA) has been developed as a rapid and easy detection device for Tamiflu resistance. It shows detection specificity for various virus concentrations of Tamiflu-resistant virus even for the mixture of WT and Tamiflu-resistant viruses, where the limit of detection (LOD) is 5 × 102 ~ 103 PFU per test (=1 × 104 PFU/mL). It has been confirmed that this platform can provide accurate information on whether a virus exhibits Tamiflu resistance, thus supporting the selection of appropriate treatments using point-of-care (POC) diagnostics.
Influenza viruses cause respiratory infection, spread through respiratory secretions, and are shed into the nasal secretion and saliva specimens. Therefore, nasal fluid and saliva are effective clinical samples for the diagnosis of influenza virus-infected patients. Although several methods have been developed to detect various types of influenza viruses, approaches for detecting mutant influenza viruses in clinical samples are rarely reported. Herein, we report for the first time a surface-enhanced Raman scattering (SERS)-based sensing platform for oseltamivir-resistant pandemic H1N1 (pH1N1) virus detection in human nasal fluid and saliva. By combining SERS-active urchin Au nanoparticles and oseltamivir hexylthiol, an excellent receptor for the pH1N1/ H275Y mutant virus, we detected the pH1N1/H275Y virus specifically and sensitively in human saliva and nasal fluid samples. Considering that the current influenza virus infection testing methods do not provide information on the antiviral drug resistance of the virus, the proposed SERS-based diagnostic test for the oseltamivir-resistant virus will inform clinical decisions about the treatment of influenza virus infections, avoiding the unnecessary prescription of ineffective drugs and greatly improving therapy.
Self-standing ZnO nanotube (ZNT) arrays were fabricated on the surface of a GaN-based emitter with an indium tin oxide (ITO) transparent layer using a hydrothermal method and temperature cooling down process. For the greater enhancement of photon extraction efficiency, ZNT/SiO core-shell nanostructure arrays were fabricated on the emitter with a 430 nm wavelength. The optical output power of ZNT/SiO core-shell arrays on the emitter with ITO electrode was remarkably enhanced by 18.5%, 28.1%, and 55.9%, compared to those of ZNTs, ZNRs on an ITO film on an emitter and ITO film on an emitter as a conventional emitter, respectively. The large enhancement in optical output is attributable to the synergistic effect of efficient photon injection from the ITO/GaN layer to ZNTs because of the well-matched refractive indices and wave-guiding, in addition to the superior photon extraction by the SiO coating layer on the ZNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.