The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the active sites of class I and class II aaRSs. The difference in mechanism in two classes as pointed out in recent study (S. Dutta Banik and N. Nandi, J. Biomol. Struct. Dyn. 30, 701 (2012)) is related with the fact that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs as explained in the present work. The charge population difference between the reacting centers (which are the alphaP atom of ATP (q(p)) and the attacking oxygen atom of carboxylic acid group (q(o)), respectively) denoted by delta(q), is a measure of the propensity of nucleophilic attack. The population analysis of the substrate AA shows that a non-negligible difference exists between the attacking oxygens of AA in class I (syn) and in class II (anti) which is one reason for the lower value of delta(q) in class II relative to class I. The population analysis of the AA, ATP, Mg+2 ions and active site residues shows that the difference in delta(q) values of the two classes is substantially reduced. When ions and residues are considered. Thus, the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.