Mitochondria play a key role in the pathophysiology of post-injury inflammation. Cell-free mitochondrial DNA (cf-mtDNA) is now understood to catalyse sterile inflammation after trauma. Observations in trauma cohorts have identified high cf-mtDNA in patients with systemic inflammatory response syndrome and multiple organ failure as well as following major surgery. The source of cf-mtDNA can be various cells affected by mechanical and hypoxic injury (passive mechanism) or induced by inflammatory mechanisms (active mechanism). Multiple forms of cf-mtDNA exist; mtDNA fragments, mtDNA in microparticles/vesicles and cell-free mitochondria. Trauma to cells that are rich in mitochondria are believed to release more cf-mtDNA. This review describes the current understanding of the mechanisms of cf-mtDNA release, its systemic effects and the potential therapeutic implications related to its modification. Although current understanding is insufficient to change trauma management, focussed research goals have been identified to pave the way for monitoring and manipulation of cf-mtDNA release and effects in trauma.
Trauma may cause irreversible tissue damage and loss of function despite current best practice. Healing is dependent both on the nature of the injury and the intrinsic biological capacity of those tissues for healing. Preclinical research has highlighted stem cell therapy as a potential avenue for improving outcomes for injuries with poor healing capacity. Additionally, trauma activates the immune system and alters stem cell behaviour. This paper reviews the current literature on stem cells and its relevance to trauma care. Emphasis is placed on understanding how stem cells respond to trauma and pertinent mechanisms that can be utilised to promote tissue healing. Research involving notable difficulties in trauma care such as fracture non-union, cartilage damage and trauma induced inflammation is discussed further.
Non-union is a taxing complication of fracture management for both the patient and their surgeon. Modern fracture fixation techniques have been developed to optimise the biomechanical environment for fracture healing but do not guarantee union. Patient biology has a critical role in achieving union and stem cell therapy has potential for improving fracture healing at a cellular level to treat or avoid non-union. This article reviews the current understanding of non-union, concepts in bone healing and the current literature on the application of stem cells in non-union.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.