The land-use and land-cover (LULC) pattern of an area is an outcome of natural and socio-economic factors and their use spatially by man; this LULC varies from the forest, water body, agricultural land and so on. Remote Sensing (RS) and Geographical Information System (GIS) studies have predominantly focused on providing the technical knowledge of, where, and the type of LULC change that has occurred and its impacts on man and the environment. Knowledge about LULC changes is essential for understanding the relationships and interfaces between humans and the natural environment. The purpose of this article is to review the previous studies of the spatiotemporal LULC changes. However, thirty (30) articles were reviewed from 2011 to 2017. However, these articles studied the LULC, classification, changes and change detection analysis, using different methods and software of RS and G.I.S. The finding shows that these articles have overall accuracy assessment ranges from 75% to 95% validations. Also, supervised classification in Maximum Likelihood Algorithm method was mostly employed for the LULC classification. Moreover, these reviewed articles confirmed that LULC changes are imminent as a result of both natural and human factors which lead to increase and decrease of one LULC cover to another. Therefore proper monitoring of LULC changes when applied help the relevant government bodies, agencies and environmental managers utilise the environment to the fullest.
Geographical information system (GIS) techniques and Remote Sensing (RS) data are fundamental in the study of land use (LU) and land cover (LC) changes and classification. The aim of this study is to map and classify the LU and LC change of Lake Kenyir Basin within 40 years’ period (1976 to 2016). Multi-temporal Landsat images used are MSS 1976, 1989, ETM+ 2001 and OLI 8 2016. Supervised Classification on Maximum Likelihood Algorithm method was used in ArcGIS 10.3. The result shows three classes of LU and LC via vegetation, water body and built up area. Vegetation, which is the dominant LC found to be 100%, 88.83%, 86.15%, 81.91% in 1976, 1989, 2001 and 2016 respectively. While water body accounts for 0%, 11.17%, 12.36% and 13.62% in the years 1976, 1989, 2001 and 2016 respectively and built-up area 1.49% and 4.47 in 2001 and 2016 respectively. The predominant LC changes in the study are the water body and vegetation, the earlier increasing rapidly at the expense of the later. Therefore, proper monitoring, policies that integrate conservation of the environment are strongly recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.