As the complexity of multi-physics simulations increases, there is a need for efficient flow of information between components. Discrete 'coupler' codes can abstract away this process, improving solver interoperability. One such multi-physics problem is modelling the high pressure compressor of turbofan engines, where instances of rotor/stator CFD simulations are coupled. Configuring couplers and allocating resources correctly can be challenging for such problems due to the sliding interfaces between codes. In this research, we present CPX, a mini-coupler designed to model the performance behaviour of a production coupler framework at Rolls-Royce plc., used for coupling rotor/stator simulations. CPX, the first mini-coupler framework of its kind, is combined with a CFD mini-app to predict the run-time and scaling behaviour of large scale coupled CFD simulations. We demonstrate high qualitative and quantitative predictive accuracy with a less than 17% mean error. A performance model is developed to predict the 'optimum' configuration of resources, and is tested to show the high accuracy of these predictions. The model is also used to project the 'optimum' configuration for a 6 Billion cell test case, a problem size representative of current leading-edge production workloads, on a 100,000 core cluster and a 400 GPU cluster. Further testing reveals that the 'optimum' configuration is unstable if not set up correctly, and therefore a trade-off needs to be made with a marginally lessthan-optimal setup to ensure stability. The work illustrates the significant utility of CPX to carry out such rapid design space and run-time setup exploration studies to obtain the best performance from production CFD coupled simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.