In this paper, we present a new face detection scheme using deep learning and achieving state-of-the-art recognition performance using real-world datasets. We designed and implemented a face recognition system using Principal Component Analysis (PCA) and Faster R Convolutional Neural Network (Faster R CNN). In particular, we improve the state-of-the-art Faster RCNN framework by using Principal Component Analysis (PCA) technique and Faster R CNN to detect and recognise faces in a face database. The Principal Component Analysis (PCA) was used to extract features and dimensionality reduction from the face database, while the Faster R Convolutional Neural Network algorithm was used to identify patterns in the dataset via training the neural network. The three real-world datasets used in our experiment are ORL, Yale, and California face dataset. When implemented on the ORL face dataset, the algorithm achieved average recognition accuracy of 99%, with a recognition time of 147.72 seconds for 10 runs, and the recognition time/image was 0.3 sec/image on 400 images. The Yale face dataset achieved average recognition accuracy of 99.24% with a recognition time of 63.45 seconds for 10 runs, and the recognition time/image was 0.53 sec/image on 120 images. Finally, on California Face Database (CFD), it achieved average recognition accuracy of 99.52% with a recognition time of 226.05 seconds for 10 runs, and the recognition time/image was 0.27 sec/image on 827 images. On the CFD dataset, however, the proposed approach has excellent classification performance when the recall ratio is high. The proposed method achieves a higher recall and accuracy ratio than the Faster RCNN without PCA method. For the F-score, the proposed method achieved 0.98, which is significantly higher than the 0.95 achieved by the Faster-RCNN. This demonstrates the superiority of our model performance-wise as against state-of-the-art, both in terms of accuracy and fast recognition. Therefore our model is more efficient when compared to the latest researches done in the area of facial recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.