The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.
This study provides comprehensive benchmark calculations for the thermochemical properties of the common α-amino acids. Calculated properties include the proton affinity, gas-phase basicity, protonation entropy, ΔH°(acid), ΔG°(acid), and enthalpies of formation for the protonated and deprotonated α-amino acids. In order to determine the performance at various levels of theory, including density functional methods and composite methods, the calculated thermochemical properties are compared to experimental results. For all the common α-amino acids investigated, the thermochemical properties computed with the Gaussian-n theories were found to be quite consistent with each other in terms of mean absolute deviation from experiment. While all Gaussian-n theory values can serve as benchmarks, we focus on the G3MP2 values as it is the least resource-intensive of the Gaussian-n theories considered.
Oxidation of guanine in DNA yields the nucleobase damage product 8-oxoguanine (8-oxoG), whose further oxidation gives other more stable products. In the present study, the mechanism for the deamination of 8-oxoG with H(2)O, 2H(2)O, H(2)O/OH(-), and 2H(2)O/OH(-) and for protonated 8-oxoG (8-oxoGH(+)) with H(2)O has been investigated using ab initio calculations. All structures were optimized at RHF/6-31G(d), MP2/6-31G(d), and B3LYP with the 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), and 6-31++G(d.p) basis sets. Energies were determined at the G3MP2 level of theory, and solvent calculations were performed using both the polarizable continuum model (PCM) and the solvation model on density (SMD). Intrinsic reaction coordinate calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and, in the final step, an intermediate that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with H(2)O/OH(-) was found to have an overall activation energy of 187, 176, and 156 kJ mol(-1) for the gas phase, PCM, and SMD, respectively, which are ∼50 kJ mol(-1) lower than with H(2)O only. These barriers can be compared to those for the reaction of 8-oxoGH(+) with H(2)O of 248 kJ mol(-1) in the gas phase and 238 kJ mol(-1) in aqueous solution (PCM). The lowest overall activation energies (G3MP2) are for the deamination of 8-oxoG with 2H(2)O/OH(-), 134 kJ mol(-1) in the gas phase and 129 kJ mol(-1) with PCM.
In this study, microwave-assisted Knoevenagel condensation was used to produce two novel series of derivatives (1−6) from benzylidenemalononitrile and ethyl 2-cyano-3-phenylacrylate. The synthesized compounds were characterized using Fourier transform infrared (FT-IR) and 1 H NMR spectroscopies. The pharmacodynamics, toxicity profiles, and biological activities of the compounds were evaluated through an in silico study using prediction of activity spectra for substances (PASS) and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies. According to the PASS prediction results, compounds 1−6 showed greater antineoplastic potency for breast cancer than other types of cancer. Molecular docking was employed to investigate the binding mode and interaction sites of the derivatives (1−6) with three human cancer targets (HER2, EGFR, and human FPPS), and the protein−ligand interactions of these derivatives were compared to those reference standards Tyrphostin 1 (AG9) and Tyrphostin 23 (A23). Compound 3 showed a stronger effect on two cell lines (HER2 and FPPS) than the reference drugs. A 20 ns molecular dynamics (MD) simulation was also conducted to examine the ligand's behavior at the active binding site of the modeled protein, utilizing the lowest docking energy obtained from the molecular docking study. Enthalpies (ΔH), Gibbs free energies (ΔG), entropies (ΔS), and frontier molecular orbital parameters (highest occupied molecular orbital−lowest unoccupied molecular orbital (HOMO−LUMO) gap, hardness, and softness) were calculated to confirm the thermodynamic stability of all derivatives. The consistent results obtained from the in silico studies suggest that compound 3 has potential as a new anticancer and antiparasitic drug. Further research is required to validate its efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.