For the last years scientific community has witnessed a rapid development of novel types of biomaterials, which properties made them applicable in numerous fields of medicine. Although nanosilver, well-known for its antimicrobial, anti-angiogenic, anti-inflammatory and anticancer activities, as well as hyaluronic acid, a natural polysaccharide playing a vital role in the modulation of tissue repair, signal transduction, angiogenesis, cell motility and cancer metastasis, are both thoroughly described in the literature, their complexes are still a novel topic. In this review we introduce the most recent research about the synthesis, properties, and potential applications of HA-nanosilver composites. We also make an attempt to explain the variety of mechanisms involved in their action. Finally, we present biocompatible and biodegradable complexes with bactericidal activity and low cytotoxicity, which properties suggest their suitability for the prophylaxis and therapy of chronic wounds, as well as analgetic therapies, anticancer strategies and the detection of chemical substances and malignant cells. Cited studies reveal that the usage of hyaluronic acid-silver nanocomposites appears to be efficient and safe in clinical practice.
This article has been peer reviewed and published immediately upon acceptance.It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.