In this paper, we present results of detailed studies on amplified spontaneous emission (ASE) and lasing achieved in a double-layer system consisted of a biopolymer based matrix loaded with 3-(1,1-dicyanoethenyl1)-1phenyl-4,5dihydro-1H-pyrazole organic nonlinear optical dye and photochromic polymer. The laser action was achieved via distributed feedback configuration with third order of Bragg scattering on surface relief grating generated in photochromic polymer. To excite the luminescence, we have used 6 ns pulses of Nd:YAG laser at 532 nm. The ASE and lasing thresholds were estimated to be 17 mJ/cm2 and 11 mJ/cm2, respectively.
Here, we report on the realization of random lasing (RL) and distributed feedback (DFB) lasing in a layer of luminescent 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) organic nonlinear optical dye that has been dispersed in a poly(methyl methacrylate) (PMMA) matrix. The RL phenomenon appears due to the presence of spontaneously formed micro- and nano-crystals of DCNP in the bulk of the PMMA during the sample preparation. DFB can be realized in an optical system by using degenerated two-wave mixing in the pumping beams. The period of the interference pattern can be easily changed by changing the intersection angle of the pumping beams, resulting in a real time, fully reversible method of DFB lasing emission tuning. Because of the two neighboring stimulated emission bands of DCNP, it is possible to tune the lasing wavelength over a long range of about 65 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.