This paper describes neural models developed for the Hate Speech and Offensive Content Identification in English and Indo-Aryan Languages Shared Task 2021. Our team called neuro-utmn-thales participated in two tasks on binary and fine-grained classification of English tweets that contain hate, offensive, and profane content (English Subtasks A & B) and one task on identification of problematic content in Marathi (Marathi Subtask A). For English subtasks, we investigate the impact of additional corpora for hate speech detection to fine-tune transformer models. We also apply a one-vs-rest approach based on Twitter-RoBERTa to discrimination between hate, profane and offensive posts. Our models ranked third in English Subtask A with the F1-score of 81.99% and ranked second in English Subtask B with the F1-score of 65.77%. For the Marathi tasks, we propose a system based on the Language-Agnostic BERT Sentence Embedding (LaBSE). This model achieved the second result in Marathi Subtask A obtaining an F1 of 88.08%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.