The video surveillance technology is used to find crime events in public places and capture live public events. Hence, detecting the criminalist before the crime actions is the most needed event to catch the criminalist. However, the presence of noise content in the trained video has raised the difficulties in crime specification by maximizing the complexity range of the data. To overcome this issue, this research has designed a novel lion-based deep belief neural paradigm (LbDBNP) to identify criminals by their activities and handling tools. Initially, three types of datasets were trained to the system then the training flaws were eliminated in the preprocessing layer. Hereafter, the cleaned data is imported to the classification module to detect the crime events present in the video. Subsequently, the designed model is implemented using the Python framework in Windows 10 platform. To evaluate the efficiency of the designed model, the attack is launched in the proposed model after those metrics are calculated. In addition, the robustness of the designed system is verified by three datasets, such as UCSDped1, UCSDped2, and avenue crime. Also, the key parameters of the designed model have been evaluated and compared with other existing schemes to verify the proposed model's robustness by achieving the finest outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.