Vitamin B12 deficiency seems to be more common worldwide than previously thought. However, only a few reports based on data from newborn screening (NBS) programs have drawn attention to that subject. In Estonia, over the past three years, we have diagnosed 14 newborns with congenital acquired vitamin B12 deficiency. Therefore, the incidence of that condition is 33.8/100,000 live births, which is considerably more than previously believed. None of the newborns had any clinical symptoms associated with vitamin B12 deficiency before the treatment, and all biochemical markers normalized after treatment, which strongly supports the presence of treatable congenital deficiency of vitamin B12. During the screening period, we began using actively ratios of some metabolites like propionylcarnitine (C3) to acetylcarnitine (C2) and C3 to palmitoylcarnitine (C16) to improve the identification of newborns with acquired vitamin B12 deficiency.In the light of the results obtained, we will continue to screen the congenital acquired vitamin B12 deficiency among our NBS program. Every child with aberrant C3, C3/C2 and C3/C16 will be thoroughly examined to exclude acquired vitamin B12 deficiency, which can easily be corrected in most cases.
Background
Multiple acyl‐CoA dehydrogenase deficiency (MADD), also known as glutaric aciduria type II, is a mitochondrial fatty acid oxidation disorder caused by variants in ETFA, ETFB, and ETFDH. Recently, riboflavin transporter genes and the mitochondrial FAD transporter gene have also been associated with MADD‐like phenotype.
Methods
We present a case of MADD identified by newborn biochemical screening in a full‐term infant suggestive of both medium‐chain acyl‐CoA dehydrogenase deficiency and MADD. Urine organic acid GC/MS analysis was also concerning for both disorders. However, panel sequencing of ETFA, ETFB, ETFDH, and ACADM was unrevealing. Ultimately, a variant in the FAD synthase gene, FLAD1 was found explaining the clinical presentation.
Results
Exome sequencing identified compound heterozygous variants in FLAD1: NM_025207.4: c.[442C>T];[1588C>T], p.[Arg148*];[Arg530Cys]. The protein damaging effects were confirmed by Western blot. The patient remained asymptomatic and there was no clinical decompensation during the first year of life. Plasma acylcarnitine and urinary organic acid analyses normalized without any treatment. Riboflavin supplementation was started at 15 months.
Conclusion
Newborn screening, designed to screen for specific treatable congenital metabolic diseases, may also lead to the diagnosis of additional, very rare metabolic disorders such as FLAD1 deficiency. The case further illustrates that even milder forms of FLAD1 deficiency are detectable in the asymptomatic state by newborn screening.
Blood phenylalanine (Phe) values from the dried blood spots of all Estonian phenylketonuria (PKU) patients have been deposited into a unified electronic laboratory database for eight years, providing an opportunity to assess the adherence of the patients to dietary recommendations over time and to observe patient practices both individually and collectively. Our results demonstrate generally good adherence to clinical and dietary recommendations during the first six years of life, as the percentage of patients with median Phe values fitting under the national recommendation levels were 95%, 84% and 70% in age groups 0–1, 1–2 and 2–6 years, respectively. Conversely, significant deviations occur in the group of 6 to 12 year-olds, mildly decreasing in adolescence and increasing in adulthood (43%, 53% and 57%, respectively). Wide individual differences occurred in all groups, especially in patients with a classical PKU phenotype caused by PAH variants that fully abolish phenylalanine hydroxylase activity. Surprisingly, some of the best dietary adherence was seen in the late-diagnosed PKU patients with poor cognitive functioning. As a rule, the median of Phe values crosses the recommended thresholds in approximately one third to one half of the patients of each age group after the first two years of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.