Plastics are an integral but largely inconspicuous part of daily human routines. The present review paper uses cross-disciplinary scientific literature to examine and assess the possible effects of nanoplastics (NPs) concerning microplastics (MPs) on human health and summarizes crucial areas for future research. Although research on the nature and consequences of MPs has seen a substantial rise, only limited studies have concentrated on the atmospheric nanosized polymeric particles. However, due to the intrinsic technological complications in separating and computing them, their existence has been difficult to determine correctly. There is a consensus that these are not only existing in the environment but can get directly released or as the outcome of weathering of larger fragments, and it is believed to be that combustion can be the tertiary source of polymeric particles. NPs can have harmful consequences on human health, and their exposure may happen via ingestion, inhalation, or absorption by the skin. The atmospheric fallout of micro (nano) plastics may be responsible for contaminating the environment. Apart from this, different drivers affect the concentration of micro (nano) plastics in every environment compartment like wind, water currents, vectors, soil erosion, run-off, etc. Their high specific surface for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. These NPs could potentially cause physical damage by the particles themselves and biological stress by NPs alone or by leaching additives. However, there is minimal understanding of the occurrence, distribution, abundance, and fate of NPs in the environment, partially due to the lack of suitable techniques for separating and identifying NPs from complex environmental matrices.
Highlights
Micro (nano) plastics generated may reach the soil, water, and atmospheric compartments.
Atmospheric currents serve as a way to transport, leading to micro (nano) plastics pollution.
Exposure to micro (nano) plastics may happen via ingestion, inhalation, or absorption by the skin.
Nanoplastics may be environmentally more harmful than other plastic particles; the focus should be on defining the exact size range.
Visual classification of micro (nano) plastics is poor in reliability and may also contribute to microplastics being misidentified.
Graphical abstract
Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.