OBJECTIVE The aim of this study was to assess the precision and feasibility of 3D-printed marker–based augmented reality (AR) neurosurgical navigation and its use intraoperatively compared with optical tracking neuronavigation systems (OTNSs). METHODS Three-dimensional–printed markers for CT and MRI and intraoperative use were applied with mobile devices using an AR light detection and ranging (LIDAR) camera. The 3D segmentations of intracranial tumors were created with CT and MR images, and preoperative registration of the marker and pathology was performed. A patient-specific, surgeon-facilitated mobile application was developed, and a mobile device camera was used for neuronavigation with high accuracy, ease, and cost-effectiveness. After accuracy values were preliminarily assessed, this technique was used intraoperatively in 8 patients. RESULTS The mobile device LIDAR camera was found to successfully overlay images of virtual tumor segmentations according to the position of a 3D-printed marker. The targeting error that was measured ranged from 0.5 to 3.5 mm (mean 1.70 ± 1.02 mm, median 1.58 mm). The mean preoperative preparation time was 35.7 ± 5.56 minutes, which is longer than that for routine OTNSs, but the amount of time required for preoperative registration and the placement of the intraoperative marker was very brief compared with other neurosurgical navigation systems (mean 1.02 ± 0.3 minutes). CONCLUSIONS The 3D-printed marker–based AR neuronavigation system was a clinically feasible, highly precise, low-cost, and easy-to-use navigation technique. Three-dimensional segmentation of intracranial tumors was targeted on the brain and was clearly visualized from the skin incision to the end of surgery.
Purpose. We aimed to evaluate the demographic and clinical features of patients with cervical spinal injuries secondary to shallow-water diving and share our therapeutic outcomes. Methods. A retrospective study was carried out using data extracted from the medical files of 39 patients (3 females and 36 males) who were treated surgically (n = 29) or conservatively (n = 10). Demographics, clinical features, operative data, American Spine Injury Association (ASIA) impairment scales, and Karnofsky Performance Status (KPS) results were noted. Results. The average age of our series (n = 39) was 31.59 ± 14.80 (range, 14 to 92) years. The vast majority of patients (n = 34, 87.2%) presented with isolated cervical trauma. At initial admission, neurological deficits were diagnosed in 22 (56.4%) patients. A single-level cervical involvement was noted in 18 (46.2%) patients, while 21 cases (53.8%) displayed injury involving multiple levels. The levels of cervical injury were C5 (n = 16, 41%), C6 (n = 11, 28.2%), C7 (n = 6, 15.4%), C1 (n = 5, 12.8%), and C4 (n = 1, 2.6%). A total of 22 patients had neurological deficits at admission. Surgery was performed using anterior (n = 21, 72.4%), posterior (n = 7, 24.1%), and combined anterior and posterior (n = 1, 3.4%) routes. Nine patients (23.1%) exhibited improvement in their neurological deficits. There were significant improvements in both the ASIA impairment scale and KPS results after treatment. Conclusion. Our data indicated that dive- or fall-related cervical spinal injuries are associated with profound morbidity. Reinforcement of primary prevention, identification of target population, and increased awareness on this topic are the key steps to minimize the frequency and severity of complications and to optimize therapeutic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.