Abstract. The natural language processing community has recently experienced a growth of interest in domain independent shallow semantic parsing-the process of assigning a WHO did WHAT to WHOM, WHEN, WHERE, WHY, HOW etc. structure to plain text. This process entails identifying groups of words in a sentence that represent these semantic arguments and assigning specific labels to them. It could play a key role in NLP tasks like Information Extraction, Question Answering and Summarization. We propose a machine learning algorithm for semantic role parsing, extending the work of Gildea and Jurafsky (2002), Surdeanu et al. (2003) and others. Our algorithm is based on Support Vector Machines which we show give large improvement in performance over earlier classifiers. We show performance improvements through a number of new features designed to improve generalization to unseen data, such as automatic clustering of verbs. We also report on various analytic studies examining which features are most important, comparing our classifier to other machine learning algorithms in the literature, and testing its generalization to new test set from different genre. On the task of assigning semantic labels to the PropBank (Kingsbury, Palmer, & Marcus, 2002) corpus, our final system has a precision of 84% and a recall of 75%, which are the best results currently reported for this task. Finally, we explore a completely different architecture which does not requires a deep syntactic parse. We reformulate the task as a combined chunking and classification problem, thus allowing our algorithm to be applied to new languages or genres of text for which statistical syntactic parsers may not be available.
Semantic role labeling is the process of annotating the predicate-argument structure in text with semantic labels. In this paper we present a state-of-the-art baseline semantic role labeling system based on Support Vector Machine classifiers. We show improvements on this system by: i) adding new features including features extracted from dependency parses, ii) performing feature selection and calibration and iii) combining parses obtained from semantic parsers trained using different syntactic views. Error analysis of the baseline system showed that approximately half of the argument identification errors resulted from parse errors in which there was no syntactic constituent that aligned with the correct argument. In order to address this problem, we combined semantic parses from a Minipar syntactic parse and from a chunked syntactic representation with our original baseline system which was based on Charniak parses. All of the reported techniques resulted in performance improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.