The global biogeography of microorganisms remains largely unknown, in contrast to the well-studied diversity patterns of macroorganisms. We used arbuscular mycorrhizal (AM) fungus DNA from 1014 plant-root samples collected worldwide to determine the global distribution of these plant symbionts. We found that AM fungal communities reflected local environmental conditions and the spatial distance between sites. However, despite AM fungi apparently possessing limited dispersal ability, we found 93% of taxa on multiple continents and 34% on all six continents surveyed. This contrasts with the high spatial turnover of other fungal taxa and with the endemism displayed by plants at the global scale. We suggest that the biogeography of AM fungi is driven by unexpectedly efficient dispersal, probably via both abiotic and biotic vectors, including humans.
One Sentence Summary: Empirical evidence from grasslands around the world demonstrates a humped-back relationship between plant species richness and biomass at the 1 m 2 plot scale.Abstract: One of the central problems of ecology is the prediction of species diversity. The humped-back model (HBM) suggests that plant diversity is highest at intermediate levels of productivity; at low productivity few species can tolerate the environmental stresses and at high productivity a small number of highly competitive species dominate. A recent study claims to have comprehensively refuted the HBM. Here we show, using the largest, most geographically diverse dataset ever compiled and specifically built for testing this model that if the conditions are met, namely a wide range in biomass at the 1 m 2 plot level and the inclusion of plant litter, the relationship between plant biomass and species richness is hump shaped, supporting the HBM. Our findings shed new light on the prediction of plant diversity in grasslands, which is crucial for supporting management practices for effective conservation of biodiversity. 4Main Text: The relationship between plant diversity and productivity is a topic of intense debate (1-6). The HBM states that plant species richness peaks at intermediate productivity, taking above-ground biomass as a proxy for annual net primary productivity (ANPP) (7-9). This diversity peak is driven by two opposing processes; in unproductive and disturbed ecosystems where there is low plant biomass, species richness is limited by either stress, such as insufficient water and mineral nutrients, or high levels of disturbance-induced removal of biomass, which few species are able to tolerate. In contrast, in the low disturbance and productive conditions that generate high plant biomass it is competitive exclusion by a small number of highly competitive species that is hypothesized to constrain species richness (7-9). Other mechanisms proposed to explain the unimodal relationship between species richness and productivity include disturbance (10), evolutionary history and dispersal limitation (11,12), and density limitation affected by plant size (13).Different case studies have supported or rejected the HBM, and three separate meta-analyses reached different conclusions (14). This inconsistency may indicate a lack of generality of the HBM, or it may reflect a sensitivity to study characteristics including the type(s) of plant communities considered, the taxonomic scope, the length of the gradient sampled, the spatial grain and extent of analyses (14,15), and the particular measure of net primary productivity (16). Although others would argue (6), we maintain that the question remains whether the HBM serves as a useful and general model for grassland ecosystem theory and management. 5 We quantified the form and strength of the richness-productivity relationship using novel data from a globally-coordinated (17), distributed, scale-standardized and consistently designed survey, in which plant richness and biomass were m...
We aimed to enhance understanding of the molecular diversity of arbuscular mycorrhizal fungi (AMF) by building a new global dataset targeting previously unstudied geographical areas. In total, we sampled 96 plant species from 25 sites that encompassed all continents except Antarctica. AMF in plant roots were detected by sequencing the nuclear SSU rRNA gene fragment using either cloning followed by Sanger sequencing or 454-sequencing. A total of 204 AMF phylogroups (virtual taxa, VT) were recorded, increasing the described number of Glomeromycota VT from 308 to 341 globally. Novel VT were detected from 21 sites; three novel but nevertheless widespread VT (Glomus spp. MO-G52, MO-G53, MO-G57) were recorded from six continents. The largest increases in regional VT number were recorded in previously little-studied Oceania and in the boreal and polar climatic zones - this study providing the first molecular data from the latter. Ordination revealed differences in AM fungal communities between different continents and climatic zones, suggesting that both biogeographic history and environmental conditions underlie the global variation of those communities. Our results show that a considerable proportion of Glomeromycota diversity has been recorded in many regions, though further large increases in richness can be expected in remaining unstudied areas.
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood.
Island biogeography theory is one of the most influential paradigms in ecology. That island characteristics, including remoteness, can profoundly modulate biological diversity has been borne out by studies of animals and plants. By contrast, the processes influencing microbial diversity in island systems remain largely undetermined. We sequenced arbuscular mycorrhizal (AM) fungal DNA from plant roots collected on 13 islands worldwide and compared AM fungal diversity on islands with existing data from mainland sites. AM fungal communities on islands (even those >6000 km from the closest mainland) comprised few endemic taxa and were as diverse as mainland communities. Thus, in contrast to patterns recorded among macro-organisms, efficient dispersal appears to outweigh the effects of taxogenesis and extinction in regulating AM fungal diversity on islands. Nonetheless, AM fungal communities on more distant islands comprised a higher proportion of previously cultured and large-spored taxa, indicating that dispersal may be human-mediated or require tolerance of significant environmental stress, such as exposure to sunlight or high salinity. The processes driving large-scale patterns of microbial diversity are a key consideration for attempts to conserve and restore functioning ecosystems in this era of rapid global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.