With a view to understand the molecular basis of sperm motility, we have tried to establish the human sperm proteome by two-dimensional PAGE MALDI MS/MS analysis. We report identification of 75 different proteins in the human spermatozoa. Comparative proteome analysis was carried out for asthenozoospermic and normozoospermic patients to understand the molecular basis of sperm motility. Analysis revealed eight proteins (including one unidentified) with altered intensity between the groups. Differential proteins distributed into three functional groups: 'energy and metabolism' (triose-phosphate isomerase, glycerol kinase 2, testis specific isoform and succinyl-CoA:3-ketoacid co-enzyme A transferase 1, mitochondrial precursor); 'movement and organization' (tubulin beta 2C and tektin 1) and 'protein turnover, folding and stress response' (proteasome alpha 3 subunit and heat shock-related 70 kDa protein 2). It was interesting to note that although the proteins falling in the functional group of 'energy and metabolism' are higher in the asthenozoospermic patients, the other two functional groups contain proteins, which are higher in the normozoospermic samples. Validation of results carried out for proteasome alpha 3 subunit by immunoblotting and confocal microscopy, confirmed significant changes in intensity of proteasome alpha 3 subunit in asthenozoospermic samples when compared with normozoospermic controls. Significant positive correlation too was found between proteasome alpha 3 subunit levels and rapid, linear progressive motility of the spermatozoa. In our understanding, this data would contribute appreciably to the presently limited information available about the proteins implicated in human sperm motility.
Genetic factors cause about 10% of male infertility. Azoospermia factors (AZFa, AZFb, AZFc) are considered to be the most important for spermatogenesis. We therefore made an attempt to evaluate the genetic cause of azoospermia, Y chromosome deletion in particular, in Indian men. We have analyzed a total of 570 men, including 340 azoospermic men and 230 normal control subjects. DNA samples were initially screened with 30 sequence-tagged site (STS) markers representing AZF regions (AZFa, AZFb, AZFc). Samples, with deletion in the above regions were mapped by STS walking. Further, the deletions were confirmed by Southern hybridization using the probes from both euchromatic and heterochromatic regions. Of the total 340 azoospermic men analyzed, 29 individuals (8.5%) showed Y chromosome deletion, of which deletion in AZFc region was the most common (82.8%) followed by AZFb (55.2%) and AZFa (24.1%). Microdeletions were observed in AZFa, whereas macrodeletions were observed in AZFb and AZFc regions. Deletion of heterochromatic and azoospermic regions was detected in 20.7% of the azoospermic men. In 7 azoospermic men, deletion was found in more than 8.0 Mb spanning AZFb and AZFc regions. Sequence analysis at the break points on the Y chromosome revealed the presence of L1, ERV, and other retroviral repeat elements. We also identified a approximately 240-kb region consisting of 125 bp tandem repeats predominantly comprised of ERV elements in the AZFb region. Histological study of the testicular tissue of the azoospermic men, who showed Y chromosome deletion, revealed complete absence of germ cells and presence of only Sertoli cells.
The autosomal DAZL (Deleted-in-Azoospermic-Like) gene, mapped to the short arm of the human chromosome 3, is the precursor for the Y-chromosomal DAZ cluster, which encodes for putative RNA-binding proteins. Mutations in the DAZL have been reported to be associated with spermatogenic failure in Taiwanese population but not in Caucasians. As there was no study on Indian populations, we have analysed the entire coding sequences of exons 2 and 3 of DAZL in a total of 1010 men from Indian subcontinent, including 660 infertile men with 598 non-obstructive azoospermia, 62 severe oligozoospermia and 350 normozoospermic fertile control men, to investigate whether mutation(s) in the DAZL is associated with male infertility. Interestingly, none of our samples (1010) showed A386G (T54A) mutation, which was found to be associated with spermatogenic failure in Taiwanese population. In contrast, A260G (T12A) mutation was observed in both infertile and normozoospermic fertile control men, without any significant association with infertile groups (chi2= 0.342; p = 0.556). Similarly, we have found a novel A437G (I71V) mutation, which is also present in both infertile and normozoospermic fertile control men without any significant difference (chi2 = 0.476; p = 0.490). Our study clearly demonstrates the complete absence of the A386G (T54A) mutation in Indian subcontinent and the other two mutations --A260G (T12A) and A437G (I71V)--observed are polymorpic. Therefore, we conclude that these mutations in the DAZL gene are not associated with male infertility in Indian subcontinent.
Deletions in the AZoospermia Factor (AZF) regions (spermatogenesis loci) on the human Y chromosome are reported as one of the most common causes of severe testiculopathy and spermatogenic defects leading to male infertility, yet not much data is available for Indian infertile men. Therefore, we screened for AZF region deletions in 973 infertile men consisting of 771 azoospermia, 105 oligozoospermia and 97 oligoteratozoospermia cases, along with 587 fertile normozoospermic men. The deletion screening was carried out using AZF-specific markers: STSs (Sequence Tagged Sites), SNVs (Single Nucleotide Variations), PCR-RFLP (Polymerase Chain Reaction - Restriction Fragment Length Polymorphism) analysis of STS amplicons, DNA sequencing and Southern hybridization techniques. Our study revealed deletion events in a total of 29.4% of infertile Indian men. Of these, non-allelic homologous recombination (NAHR) events accounted for 25.8%, which included 3.5% AZFb deletions, 2.3% AZFbc deletions, 6.9% complete AZFc deletions, and 13.1% partial AZFc deletions. We observed 3.2% AZFa deletions and a rare long AZFabc region deletion in 0.5% azoospermic men. This study illustrates how the ethnicity, endogamy and long-time geographical isolation of Indian populations might have played a major role in the high frequencies of deletion events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.