Lignocellulosic tetrahydrofuranic (THF) biofuels have been identified as promising fuel candidates for spark-ignition (SI) engines. To support the potential use as transportation biofuels, fundamental studies of their combustion and emission behavior are highly important. In the present study, the high-temperature (HT) combustion chemistry of tetrahydrofurfuryl alcohol (THFA), a THF based biofuel, was investigated using a comprehensive experimental and numerical approach. Representative chemical species profiles in a stoichiometric premixed methane flame doped with ~20% (molar) THFA at 5.3 kPa were measured using online gas chromatography. The flame temperature was obtained by NO laser-induced fluorescence (LIF) thermometry. More than 40 chemical products were identified and quantified. Many of them such as ethylene, formaldehyde, acrolein, allyl alcohol, 2,3-dihydrofuran, 3,4-dihydropyran, 4-pentenal, and tetrahydrofuran-2carbaldehyde are fuel-specific decomposition products formed in rather high concentrations. In the numerical part, as a complement to kinetic modeling, high-level theoretical calculations were performed to identify plausible reaction pathways that lead to the observed products. Furthermore, the rate coefficients of important reactions and the thermochemical properties of the related species were calculated. A detailed kinetic model for high-temperature combustion of THFA was developed, which reasonably predicts the experimental data. Subsequent rate analysis showed that THFA is mainly consumed by H-abstraction reactions yielding several fuel radicals that in turn undergo either β-scission reactions or intramolecular radical addition that effectively leads to ring enlargement. The importance of specific reaction channels generally correlates with bond dissociation energies. Along THFA reaction routes, the derived species with cis configuration were found to be thermodynamically more stable than their corresponding trans configuration, which differs from usual observations for hydrocarbons.
An automated spectral fitting algorithm (named Thermo NO-LIF) designed for the extraction of temperature information from experimental NO-LIF spectra is presented and analysed. With the aid of the Thermo NO-LIF, the high-accuracy (0.5%) of multi-line NO-LIF thermometry are demonstrated in the burnt-gases region of a near-adiabatic Bunsentype premixed flame. The results are compared with the temperature measured using N 2 spontaneous Raman scattering (SRS). The current study also applies and analyses the algorithm and the thermometry technique in a premixed flat-flame under various subatmospheric pressures. The results suggest that choosing a long excitation scan range with as few overlapping lines as possible can maximise the performance of the multi-line NO-LIF thermometry. The uncertainty arising from the overlapping lines is especially crucial at atmospheric pressure. Additionally, the current study compares the performance of multi-line NO-LIF thermometry using narrowband and broadband lasers. Thermo NO-LIF is available to anyone interested in applying multi-line NO-LIF thermometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.