IntroductionGliostatin/thymidine phosphorylase (GLS/TP) has angiogenic and arthritogenic activities, and aberrant GLS production has been observed in the active synovial membranes of rheumatoid arthritis (RA) patients. The human GLS gene promoter contains at least seven consensus binding sites for the DNA binding protein Sp1. Here we examined whether Sp1 is necessary for GLS production in RA. We also studied the effects of the Sp1 inhibitor mithramycin on GLS production in RA fibroblast-like synoviocytes (FLSs).MethodsFLSs from RA patients were treated with specific inhibitors. The gene and protein expression of GLS were studied using the quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and an enzyme immunoassay. Intracellular signalling pathway activation was determined by western blotting analysis, a luciferase assay, a chromatin immunoprecipitation (ChIP) assay and a small interfering RNA (siRNA) transfection.ResultsThe luciferase and ChIP assays showed that Sp1 binding sites in the GLS promoter were essential for GLS messenger RNA (mRNA) expression. GLS production was suppressed in FLSs by siRNA against Sp1 transfection. Mithramycin decreased GLS promoter activity, mRNA and protein expression in FLSs. Tumour necrosis factor-α (TNF-α) significantly increased GLS expression in RA FLSs; this effect was reduced by pre-treatment with cycloheximide and mithramycin.ConclusionsPretreatment of mithramycin and Sp1 silencing resulted in a significant suppression of GLS production in TNF-α-stimulated FLSs compared to controls. GLS gene expression enhanced by TNF-α was partly mediated through Sp1. As physiological concentrations of mithramycin can regulate GLS production in RA, mithramycin is a promising candidate for anti-rheumatic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.