Monitoring in situ local pH changes to dissolving/growing crystal surfaces is critical to decipher the related mechanisms. To date, however, reliable techniques to acquire such measurements remain under-developed. Here we report the first successful attempt to observe time-resolved, two-dimensional distribution of pH around crystals dissolving in aqueous solutions. The local pH change around dissolving calcium carbonate polymorphs (calcite and aragonite) was visualized by using the fluorescent probe 8-hydroxypyrene-1,3,6-trisul-fonic acid HPTS under an optical microscope. The observations unambiguously showed that pH increased and saturated rapidly immediately adjacent to the reactive surfaces on the cleavage rhombs of calcite. Approximately 1 mm away, however, the increase slowed down significantly, generating a steep pH gradient at the crystal–water interface. Aragonite, which has rough fractured surfaces in contrast to the well cleaved calcite, dissolved much faster and showed a stronger tendency for the pH profile to trace the outer shape of crystal grains. These results indicate that this technique is sensitive enough to detect small differences in dissolution between polymorphs and surface conditions and may be used as an effective tool to visualize and understand various reactions in aqueous solutions including environmental weathering and material erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.