Global declines of large carnivores have reduced the ‘landscape of fear’ that constrains the behaviour of other species. In recent years, active and passive trophic rewilding have potentially begun restoring these lost top–down controls. The Tasmanian devil Sarcophilus harrisii has declined severely due to a novel transmissible cancer. In response to extinction fears, devils were introduced to the devil‐free Maria Island, where their abundance rapidly increased. We tested how this introduction influenced risk‐sensitive foraging in the common brushtail possum Trichosurus vulpecula, a major prey species for devils, using giving‐up densities (GUDs). Before the introduction of devils, possum GUDs on Maria Island were indistinguishable from the long‐diseased region of Tasmania, where devils have been rare since ~2000. Three years after devil introduction, GUDs were 64% higher on Maria Island than the control region, demonstrating that after an initial period of high mortality, possums quickly adopted risk‐sensitive foraging behaviours. Devil activity across Maria Island was variable, leading to a heterogeneous landscape of fear and highlighting that top predators must be at functional densities to elicit behavioural responses from prey. Our study provides strong evidence that top predators modify the behaviour of prey by instilling fear, causing rapid ecological change following recoveries.
Apex predators structure ecosystems through lethal and non-lethal interactions with prey, and their global decline is causing loss of ecological function. Behavioural changes of prey are some of the most rapid responses to predator decline and may act as an early indicator of cascading effects. The Tasmanian devil ( Sarcophilus harrisii ), an apex predator, is undergoing progressive and extensive population decline, of more than 90% in long-diseased areas, caused by a novel disease. Time since local disease outbreak correlates with devil population declines and thus predation risk. We used hair traps and giving-up densities (GUDs) in food patches to test whether a major prey species of devils, the arboreal common brushtail possum ( Trichosurus vulpecula ), is responsive to the changing risk of predation when they forage on the ground. Possums spend more time on the ground, discover food patches faster and forage more to a lower GUD with increasing years since disease outbreak and greater devil population decline. Loss of top–down effects of devils with respect to predation risk was evident at 90% devil population decline, with possum behaviour indistinguishable from a devil-free island. Alternative predators may help to maintain risk-sensitive anti-predator behaviours in possums while devil populations remain low.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.